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Abstract

This paper presents the first 3D reconstruction system
using unsynchronized and helmet-held consumer cameras,
without the use of a calibration pattern. Our assumptions
are easy to meet in practice: the cameras have the same
setting (frequency, image resolution, field-of-view, roughly
equiangular). First, the time offsets between cameras are
estimated without accurate calibration as input. Second,
both inter-camera rotations and intrinsic parameters are re-
fined using structure-from-motion and bundle adjustment.
We experiment both synchronization and self-calibration on
four GoPro cameras mounted on a helmet, such that the re-
sulting multi-camera is assumed to be central and provides
a 360 degree field-of-view in the horizontal plane. A sur-
face is also estimated from a multi-camera video acquired
by walking in a city.

1. Introduction

The automatic 3D modeling of a scene from an image
sequence is a well studied topic. Today most available soft-
wares reconstruct objects or “small” parts of environments
due to the small field-of-view of the camera, unless aerial
images are taken at well selected viewpoints (e.g. thanks
to UAV). Flexible and helmet-held systems to reconstruct
complete (even immersive) environments from ground im-
agery are still lacking. In this paper, we propose to mount
several consumer cameras on a helmet; the user then moves
at a low speed (walking) in an environment and takes the
videos; lastly a surface approximating the viewed scene is
reconstructed based on assumptions about the cameras that
are easy to be meet. The reconstruction stage includes syn-
chronization and self-calibration of the multi-camera (the
main topics of the paper), as well as structure-from-motion
and surface reconstruction from a cloud of 3D points esti-
mated from the images.

Figure 1. Top: four GoPro Hero3 cameras enclosed in a cardboard
box. Bottom: resulting images of our DIY multi-camera.

1.1. Assumptions about the Cameras

The user starts all videos at once by a single click on a
wifi remote. However this synchronization is too inaccu-
rate for applications like immersive video and our 3D scene
modeling. Furthermore, we assume that the cameras are
roughly equiangular with an approximately known field-of-
view and orientation (rotations) in the multi-camera coor-
dinate system. In our context, this knowledge is easy to
obtain since the cameras are the same and mounted such
that a 360 video [1, 2] can be generated by stitching: n
cameras that are symmetrically mounted around a symme-
try axis. In practice we use the same four cameras that are
enclosed in a cardboard box as shown in Fig. 1. This can be
seen as a DIY version of the Ladybug [3] multi-camera, but
the price of our multi-camera is one magnitude smaller than
that of the Ladybug. The camera configuration is chosen
such that the distance between optical centers is as short as
possible (we do a central approximation). A greater number
of cameras can be used [4] to increase the common field-of-
view of adjacent cameras and then to make easier image
matching and blending between two adjacent cameras (this
is useful for video stitching). However both the price and
distance increase. In our case, the common field-of-view is
too small for us to automatically obtain a decent matching
using available tools (we tried Hugin [5], VideoStitch [2]
and VisualSFM [6]).
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2. Previous Work

2.1. Initializing the Intrinsic Parameters

There is an automatic method to estimate the intrin-
sic parameters of a single camera through structure-from-
motion (SfM): projective reconstruction from an image se-
quence, auto-calibration and refinement using bundle ad-
justment [14, 28] (BA). The radial distortion can also be
included in intrinsic parameters that are estimated [11, 21].
A more detailed overview about uncalibrated SfM and auto-
calibration is outside the scope of this paper.

2.2. Time Offset Estimation

In [24], transformations are estimated between consec-
utive frames of every video instead of trying to match dif-
ferent videos. The estimated offset is then that which best
“compares” the transformations between two videos. One
example in [24] is the translation magnitude that is es-
timated from tracked features. Intuitively, the larger the
translation in one video, the larger the translation in the
other. The comparison is done using cross-correlation.

Such approaches are frame-accurate (the offset is an inte-
ger) and need neither common field-of-view nor matching
between different cameras. This is interesting in our case
where matching is difficult between cameras. A survey of
methods for video synchronization can be found in [13],
but these require inter-camera matching or common field-
of-view or are designed for non jointly moving cameras.

2.3. Initializing the Inter-Camera Rotations

Once a 3D reconstruction is obtained for every camera
(Sec. 2.1) and the time offsets are known (Sec. 2.2), the re-
constructions are registered in the same coordinate frame.
In [8], a similarity transformation is robustly estimated be-
tween two reconstructions using a 3-point RANSAC algo-
rithm and image matching for 3D points in different recon-
structions. In [10], the relative pose between two cameras
is directly estimated from the pose sequences of their two
reconstructions (if the camera motion is not a pure transla-
tion). Averaging rotation (e.g. [9]) can also be used if there
is a non constant relative pose between two reconstructions
due to the drift of reconstruction(s).

2.4. Refinements for Multi-Camera

A BA is introduced in [17] to refine the relative poses
between the cameras. The successive poses of the multi-
camera and 3D points are also refined by minimizing a re-
projection error. But the intrinsic parameters are not refined
and the reprojection error is in the undistorted space of the
classical polynomial distortion model [25]. The BA in [23]
deals with points at infinity, uses ray directions as observa-
tions, and transfers the uncertainty from the measure image

space to the ray space. The refinement of intrinsic parame-
ters is left as future work in [8, 23].

Work [12] suggests that time offset and spatial transfor-
mations (e.g. rotations) between multiple sensors can be
jointly estimated using a continuous state representation.
However there are only two sensors in experiments: a cali-
brated camera and IMU. Such a method would also estimate
the time offset with sub-frame accuracy.

3. Contributions
3.1. Initializations

First we do not intend to compete with the accuracy of
the initialization methods for intrinsic parameters (Sec. 2.1)
and inter-camera rotations (Sec. 2.3). In this paper, SfM is
started using calibration initialized by approximate values.
We think that this is useful to experiment our contribution
(synchronization and BA) with respect to inaccurate input.

Here we describe two cases: single camera and multi-
camera. Since our cameras are roughly equiangular and we
have approximate knowledge of their field-of-view, their in-
trinsic parameters (including radial distortion) are approx-
imately known. Standard SfM is then applied for every
camera using these parameters and a global BA refines the
result. Once the time offsets are estimated and since we
have approximate knowledge of the intrinsic parameters and
relative/inter-camera rotations, an approximate calibration
of the multi-camera is known. We then apply SfM for the
multi-camera and a global BA refines the result.

3.2. Synchronization

Second we estimate the time offset using a method that is
less heuristic than the translation-based method (Sec. 2.2).
Let Rt be the rotation at frame t estimated by monocular
SfM for a camera (Sec. 2.1). The instantaneous angular ve-
locity is the angle in [0, π] of rotation R−1

t Rt+1. This an-
gle is the same for all cameras at the same time. Indeed,
R−1

t Rt+1 does not change if we replace Rt by RRt and Rt+1

by RRt+1 where R is the (constant) relative rotation between
two cameras. Then we compute the table of angles for ev-
ery camera and find the time offset that maximizes the cor-
relation (ZNCC) between two such tables (try to match two
sub-tables with the same length in different tables).

For n > 2 cameras, we first estimate the best offset for
every pair of adjacent cameras. Since the camera adjacen-
cies can form loops (they do in our setup) and the offsets
are estimated independently, the sum of offsets along a loop
can be non-zero although it should be zero. In this case,
we also try offsets around the best one (their difference is
in {−k, · · · − 2,−1, 1, 2, · · · + k}, where k = 1 is enough
in our experiments). The final offsets are those whose sum
along loop is zero and that maximize the sum of ZNCC.

We expect this calculation to have low ambiguity thanks



to small head motions and since the cameras are helmet-
held. In experiment (Sec. 5.2), both translation- and angle-
based methods are compared. In the translation method,
the angle of a frame is replaced by the mean of translation
moduli of feature tracks (Harris matched by ZNCC).

3.3. Bundle Adjustment

Third, we improve a BA [17] in two ways, which is based
on the classical polynomial distortion model [25]. Our BA
also refines intrinsic parameters (not only inter-camera ro-
tations and the other 3D parameters) and minimizes the re-
projection error in the right space: the distorted space where
the image points are detected. Under the standard assump-
tion that the image noise due to point detection follows
zero-mean normalized identical and independent Gaussian
vectors, the result returned by BA is a Maximum Likeli-
hood Estimator (this assumption is not true in the undis-
torted space). Sec. 4 details how to initialize the BA and
how to compute the non-closed form forward-projection of
the classical polynomial distortion model. In Sec. 5.3, we
experiment on the BA started from inaccuracies of intrin-
sic parameters and inter-camera rotations. We also com-
pare our results to others that are estimated using a cali-
bration pattern, and compare results without and with inter-
camera matches (Sec. 5.5) that are obtained using image
pre-rectification and our calibration estimation.

3.4. Applications: 3D Modeling and 360 Video

Fourth, Sec. 5.4 shows a 3D model of an environment
(a part of a city) computed by a 3D reconstruction system
that uses our synchronization and BA methods. The input
multi-camera video is taken by four GoPro Hero3 cameras
mounted on a helmet. As far as we are aware, this is the first
time such an experiment has been conducted. Lastly, there
are joint videos that show the surface and 360 videos.

4. Polynomial Distortion Model
First Sec. 4.1 provides the equations of the classical

polynomial distortion model [25], which is often used since
its closed-form back-projection is useful for SfM tasks and
epipolar geometry. Sec. 4.2 then details how to obtain the
model parameters from a given field-of-view and assuming
that the camera is equiangular. This is useful to initialize
BA. Last, Sec. 4.3 details how to efficiently compute the
forward-projection and its derivatives, which are not closed-
form. They are required by BA for minimizing errors in the
right image space (Sec. 3.3).

4.1. Back-Projection

Let K be the intrinsic parameter matrix of a perspec-
tive camera. K has focal parameters fx and fy , principal
point z0 and zero skew. The mapping from the distorted

space to the undistorted space is closed-form and depends
on radial distortion parameters ki (tangential distortions are
neglected). Let zd and zu be the distorted (original) and
undistorted (rectified) coordinates of a pixel. Their normal-
ized coordinates z̄d and z̄u meet K

(
z̄>d 1

)> =
(
z>d 1

)>
and K

(
z̄>u 1

)> =
(
z>u 1

)>
. Let r̄d = ||z̄d|| be the

normalized radial distance in the distorted image. The
link between distorted and undistorted coordinates is z̄u =
(1 +

∑n
i=1 kir̄

2i
d )z̄d. Lastly, the back-projected ray of pixel

zd has direction
(
z̄>u 1

)>
in the camera frame. Note that

the distortion center is the principal point.

4.2. Equiangular Initialization

A camera is equiangular if angle θ between the principal
axis and the back-projected ray is proportional to the (non-
normalized) radial distance rd in the distorted image. We
have rd = ||zd − z0|| and tan θ = r̄u where r̄u = ||z̄u||.

If the camera is equiangular, there is a constant c such
that θ = crd and the pixels are squares (i.e. fx = fy = f ).
Thus θ = cf r̄d. Since r̄u = r̄d(1 +

∑n
i=1 kir̄

2i
d ),

tan θ = tan(cf r̄d) = r̄d +
n∑

i=1

kir̄
2i+1
d . (1)

Since tan is not polynomial, Eq. 1 can not be exact. We use
Taylor approximation

tan θ ≈
n∑

i=0

tiθ
2i+1 = θ +

θ3

3
+

2θ5

5
+

17θ7

315
+ · · · (2)

and identify coefficients between Eqs 1 and 2. We obtain
cf = 1 using t0 and ki = ti if i ≥ 0.

In practice, we initialize z0 at the image center and com-
pute f = rd/θ for pixel zd at the center of an image bor-
der where the half-field-of-view θ is approximately known.
Note that the resulting field-of-view is not exactly as desired
due to the Taylor approximation.

4.3. Forward Projection and its Derivatives

The forward projection and its derivatives are required
by the Levenberg-Marquardt routine involved in BA. The
computations from 3D to undistorted coordinates are not
detailed since they are standard. The mapping from undis-
torted to distorted coordinates is implicitly defined by
g(zd, zu, z0,k) = 0 where k = (fx, fy, k1, k2, · · · , kn)
and function g : Rn+8 7→ R2 meets

g(zd, zu, z0,k) = (1 +
n∑

i=1

kir̄
2i
d )(zd − z0)− zu + z0. (3)

In more detail, the implicit function Theorem implies that
locally we have a C1 continuous function ϕ such that zd =
ϕ(zu, z0,k) if det ∂g

∂zd
6= 0.



First zd is estimated from zu, z0 and k by non linear
least-square minimizing zd 7→ ||g(zd)||2. In our BA con-
text, we would like to minimize reprojection error ||zd−z̃d||
where z̃d is an inlier point detected in an image. Thus z̃d is
known and close to zd (in our experiments, ||zd − z̃d|| < 2
pixels). We use an iterative method starting from z̃d to es-
timate zd. In practice, the Gauss-Newton method is accept-
able with no more than 5 iterations.

Second, ∂zd

∂ki
should be estimated to fill the hessian in

BA. We differentiate Eq. 3 with respect to ki and obtain

∂zd

∂ki
= −(

∂g

∂zd
)−1 ∂g

∂ki
. (4)

The derivatives of zd with respect to fx, fy, z0 and zu are
similar. The other derivatives (with respect to relative Euler
angles/rotation, translation etc) are computed by the chain
rule involving derivative ∂zd

∂zu
.

5. Experiments
5.1. Input

The multi-camera is defined by four GoPro Hero3 cam-
eras (Fig. 1) with the same setting; they are numbered from
0 to 3. They are mounted on the helmet such that 0 (respec-
tively, 1,2 and 3) is pointing forward left, (respectively, for-
ward right, backward right, and backward left). The videos
are recorded while the user walks the streets of a city and
under trees in a garden for a duration of 703s. The images
are a little dark since the acquisition was done in the early
morning to avoid cars and pedestrians. The camera gain
is not fixed and evolves independently for every camera.
A high frame-rate (100 fps) is used to allow accurate syn-
chronization. The resolution of a GoPro is 1280× 960, but
the image sizes are reduced by 50% to accelerate all com-
putations. Here we neglect rolling shutter and non-central
effects. We also assume that the calibration (both intrinsic
and inter-camera rotations) does not change over time.

5.2. Synchronization

Several synchronization methods are experimented on
the first 2000 frames of the four videos (a walk lasting 20s).

5.2.1 Notations

Let Ac be the name of the angle method based on standard
SfM (based on local BA [22] and refined by global BA)
using calibration c. The 9 parameters of c are fx, fy , z0 and
ki where 1 ≤ i ≤ 5.

If c = pat, the cameras are accurately calibrated using a
planar calibration pattern [16]. If c = 90, c is equiangular
and its field-of-view is 90 degrees in the horizontal direction
of Fig. 1 (Sec. 4.2). If c = 90r, every camera has the same
process: first apply SfM using c = 90 on key-frames of

Method o0,1 o1,2 o2,3 o3,0 Li Lr
A90 -15 -1 14 1 -1 3.8e-3
A90r -15 -1 14 1 -1 -2.1e-3
Apat -15 -1 14 1 -1 -2.0e-3
Tf -12 0 12 0 0 0.10
Tb -15 0 14 0 -1 -1.45
S -18 -2 17 2 -1 -0.46

Table 1. Time offsets without loop constraint. Li (Lr, respec-
tively) is the sum of four integer (real, respectively) offsets.

the video; then refine c (assuming that c is constant in the
sequence) using a global BA; lastly, use SfM once again for
all frames with the refined and final c.

Let Tf be the name of the translation method such that
the mean of translation moduli is computed in the complete
frame of a camera. Let Tb be a variant of Tf : the mean
is computed in a small area including the common field-
of-view with other cameras (most left and right columns
of images in Fig. 1). We expect Tb to be better than Tf

if the translation magnitude evolves similarly in different
cameras, especially in the common field-of-view. We also
try a sound-based synchronization method S, where sound
replaces angle/translation in the tables.

There are four offsets o0,1, o1,2, o2,3, o3,0 between adja-
cent cameras that are computed by one of the six methods
above. Let L = o0,1 + o1,2 + o2,3 + o3,0. Since we have a
loop of camera adjacencies (Fig. 1), we should have L = 0
by enforcing a loop constraint as in Sec. 3.2.

In fact we distinguish Li, the sum of integer offsets
oi,i+1, and Lr the sum of real offsets oi,i+1 + εi,i+1. We
estimate sub-frame offsets like sub-pixelic disparity using a
quadratic fit [26]: first approximate the mapping from oi,i+1

to ZNCC using a quadratic polynomial defined by its 3 val-
ues at oi,i+1 + {−1, 0,+1}; then oi,i+1 + εi,i+1 maximizes
this polynomial. Note that Lr is not used by computations
in our paper, it is used as a confidence measure.

5.2.2 Experiments

The estimated offsets without and with loop constraint are
provided in Tab. 1 and Tab. 2, respectively. Note that an
offset equal to±15 between two cameras means that the dif-
ference between the starting dates of their videos is 0.15 s.
This is non negligible. We see that the integer offsets com-
puted by Ac do not depend on the attempted calibration c,
although the difference between two SfM results with dif-
ferent c is not negligible (e.g. the SfM with c = 90 has a
final RMS which is 1.22 greater than that of the SfM with
c = 90r; the latter has a number of 2D inliers 5% greater
than that of the former). The better the c value, the bet-
ter (smaller) the |Lr| in Tab. 1. The better the c value, the
better (larger) the ZNCC score in Tab. 2. In comparison,



Method o0,1 o1,2 o2,3 o3,0 Zncc1 Zncc2

A90 -15 -1 14 2 3.854 3.795
A90r -15 -1 14 2 3.941 3.880
Apat -15 -1 14 2 3.941 3.880
Tf -12 0 12 0 2.610 2.421
Tb -15 0 14 1 3.319 3.221
S -18 -2 18 2 1.68 1.63

Table 2. Time offsets with loop constraint. Zncc1 is the greatest
sum of the four ZNCC of the four computed time offsets, Zncc2

is the second greatest ZNCC. We have −4 ≤ Zncci ≤ 4.

the |Lr| and ZNCC scores of methods S, Tf and Tb are the
worst. The results of Tf and Tb are not surprising since the
translation-based methods are essentially heuristic. Here is
one reason for the results of the sound-based method S:
some cameras, including our GoPro Hero3, provide poor
Audio/Video synchronization (according to the user guide
of [2]). A joint video (https://youtu.be/8bZM20g1p0U)
shows the videos without and with our synchronization.

5.3. Multi-Camera Bundle Adjustment

Thanks to Sec. 5.2, the four videos are frame-accurately
synchronized by skipping si frames at the beginning of the
i-th video (si − si+1 = oi,i+1 provided by A90r). Now we
examine the BA result with respect to the initialization.

5.3.1 Notations

Let Bc,R be the name of the following method: multi-
camera SfM using calibration c and inter-camera rotations
R, followed by our multi-camera BA. We define c ∈
{90, 90r, pat} as in Sec. 5.2. Writing R = π/2 means that
the inter-camera rotations between adjacent cameras are ex-
actly the rotation with angle π/2 around the z-axis of the
multi-camera coordinate frames. According to Fig. 1, this
approximates the true inter-camera rotations of our setup.
We also try other R that are perturbations of R = π/2, for
example R = π/2 + 6 means that we multiply every inter-
camera rotation by a 6 degree rotation with random axis.

The multi-camera BA in Bc,R refines all inter-camera
rotations (4*3 relative Euler angles), all intrinsic parameters
c (4*(4+5) parameters for K and ki), all 3D points and multi-
camera poses in world coordinates. Thus both inter-camera
rotation and c are assumed to be constant in every video.

Methods B=
c,R and Bconst

c,R are the same as Bc,R up to the
c refinement: B=

c,R enforces the same c for the 4 cameras
and Bconst

c,R does not refine c.

5.3.2 How to Compare two Calibrations

We compute a distance d between the multi-camera calibra-
tions estimated by Bc,R and Bconst

pat,π/2. The latter is assumed

Method d RMS #3Dpts #2Dpts
B=

90,π/2 0.36 0.511 16376 76837
B90,π/2 0.34 0.507 16365 76842
B90r,π/2 0.31 0.498 16346 76677
Bconst

pat,π/2 0 0.507 16303 76430

B90r,π/2+6 0.32 0.502 16347 76794
B90r,π/2+10 0.34 0.504 16342 76397
B90r,π/2+14 0.39 0.498 16027 71192
B90r,π/2+18 6.70 0.553 11687 52750

Table 3. Results of multi-camera SfM followed by our BA us-
ing several initializations: angular-based distance (in degrees) be-
tween Bc,R and Bconst

pat,π/2, RMS for reprojection errors in pixels,
numbers of reconstructed 3D points and 2D inlier points.

to be the most accurate since its K and ki parameters are es-
timated using a calibration pattern.

Distance d is based on the angle between rays of the two
calibrations that have the same pixel. There are two reasons
for this. First the accuracy is only needed for the ray direc-
tions in our 3D modeling application, since these directions
are directly used by SfM. Second parameters can compen-
sate themselves if their estimations are biased (e.g. the rota-
tion/principal point near-ambiguity for one view [7]).

Since two estimated calibrations can have different
multi-camera coordinate systems, their sets of rays must be
registered in the same coordinate system. The registration
is defined by rotation R, which maps one ray set to another
(no translation since the calibrations are central in our pa-
per). R is robustly estimated by RANSAC applied to pairs
of matched rays in different calibrations, and by minimiz-
ing e(R) =

∑N
i=1 ||r1

i −Rr0
i ||2 where both ray directions r1

i

and r0
i have the same pixel. Our distance is d =

√
e(R)/N

where N is the number of (sampled) rays in a multi-camera
image. Note that d is expressed in radians if d � 1.

5.3.3 Experiments

Tab. 3 provides results for several initial calibrations. In
all cases, SfM generates the same set of matched interest
points and the same number of key-frames. We obtain 41
key-frames by SfM running on the first 2000 frames.

We first examine the inter-camera rotation initializations
where R = π/2 (top of Tab. 3). According to d, the calibra-
tion of B90r,π/2 is better than that of B90,π/2. This result
is expected since both methods are the same and the former
has a better initialization. Furthermore, the calibration of
B90,π/2 is better than that of B=

90,π/2. In other words, there
is an accuracy loss if we assume that the four cameras have
exactly the same c (although they have the same setting).

We note that all these methods have similar reprojection
errors (RMS), their numbers of reconstructed 3D points and



c 90 90r pat B90r,π/2

fx 305.57 [289.8,291.4] [290.1,290.9] [289.9,292.5]
fy 305.57 [288.5,291.4] [290.1,290.9] [289.8,291.7]
u0 320.00 [318.6,324.7] [319.7,325.8] [318.0,325.6]
v0 240.00 [233.9,242.0] [234.2,240.9] [235.2,240.3]
k1 0.3333 [.3580,.3739] [.3689,.3746] [.3675,.3792]
k2 0.4000 [.0475,.0991] [.0335,.0669] [.0297,.0638]
k3 0.0539 [-.035,.0518] [.0041,.0611] [-.007,.0699]
k4 0.0218 [-.033,.0406] [-3e-4,.0173] [-.033,.0180]
k5 0.0088 [.0015,.0239] [.0067,.0197] [.0099,.0248]

Table 4. Intrinsic parameters of the four cameras in several cases.

2D inliers are roughly the sames. In the whole paper, RMS
is about 0.5 pixel (the Harris point detector has pixelic ac-
curacy and every detected point is classified as inlier for BA
if its reprojection error is less than 2 pixels).

Second, we examine the intrinsic parameter initializa-
tions c = 90r (bottom of Tab. 3). The smaller the R =
π/2 + x, the better the d value (as expected). BA provides
bad results if the R perturbation is too high (+14 and +18).
In the other cases, d is about 0.33 degrees.

Tab. 4 provides values for the intrinsic parameters of
the four cameras in several cases: c = 90 (equiangular,
Sec. 4.2), c = 90r (camera-wise refinement in Sec. 5.2),
c = pat (using calibration pattern, [16]), and c = B90r,π/2

(i.e. multi-camera-wise refinement provided by B90r,π/2,
Sec. 5.3). We see that 90r, pat and B90r,π/2 have simi-
lar K and k1 parameters for all cameras, but ki varies a lot if
i ≥ 2. According to c = pat, the four cameras have similar
(fx, fy, k1, z0), their k2 have the same magnitude order, but
their ki varies a lot if 3 ≤ i ≤ 5.

5.4. 3D Modeling

First we apply SfM to the whole sequence with the multi-
camera calibration provided by B90r,π/2 in Sec. 5.3. We use
SfM [22] based on key-frame sub-sampling, central generic
camera model, and local BA. SfM selects 1834 key-frames
from 70k frames of the multi-camera, and reconstructs 710k
points. Loops are then detected and closed using a method
similar to [15, 27] in 18 min. on a Latitude E5510 Lap-
top (i5 CPU M560 @ 2.67GHz). Fig. 2 compares the SfM
results without and with automatic loop detection and clo-
sure. The low drift without loop computation confirms that
the calibration is good.

Second, the sparse cloud of points is completed for sur-
face reconstruction. For every key-frame, we detect Canny
curves and Harris points and match them to those of the
previous key-frame using [18] and the epipolar constraint.
A Canny point is ignored if the angle between its curve tan-
gent and the epipolar line at this point is less than π/4. Both
Canny and Harris points are reconstructed by ray intersec-

Figure 2. Top views of the SfM result without (left) and with
(right) automatic loop detection and closure: 1834 key-frame
poses (small black squares) and 710k points (gray-black points)
reconstructed from 70k 4× 640× 480 images. The garden area is
on the bottom right corner and is surrounded by a few parked cars.

tion. To limit the point cloud size, we only retain one recon-
structed Canny pixel over four consecutive ones in a curve.
2.7M 3D points are computed in 42 min.

Third a surface reconstruction method ([19] improved
using [20]) is applied to the point cloud. The cloud is fil-
tered beforehand. A point is rejected if its apical angle is
less than 10 degrees. Furthermore, points are rejected if
they are below the ground or in the sky. Let v be an esti-
mate of the vertical direction. Let Vj be the set of points
that are detected and inlier in the j-th key-frame. We re-
ject point p if there is key-frame j such that p ∈ Vj and
altitude p.v is one of the ten smallest or ten largest values
in {q.v,q ∈ Vj}. The resulting surface has 1.8M triangles
and is computed in 2 min. (time without texturing).

Fig. 3 shows a global view of the reconstructed sur-
face and Fig. 4 shows local views. A joint video
(http://youtu.be/5r46SEBvz5w) shows walkthroughs in the
output surface. There are several reasons for surface errors.
Since we use ground imagery taken by a pedestrian, there is
a lack of points and bad accuracy near the tops of buildings.
Thus the main errors are in this area, and they are more vis-
ible in Fig. 3 than in the video (the viewing conditions are
different: a global and top view in Fig. 3, local views close
to the camera trajectory in the video). Another reason for er-
rors is the aperture problem: the edges that are parallel to a
street (e.g. those of a building top) can not be reconstructed
if the street is parallel to the pedestrian motion.

5.5. 360 Video

Here we compare the calibrations estimated by B90r,π/2

from several sets of image matches. The calibration quality
is evaluated for the 360 video application, i.e. how good is
the stitching of the four videos using the calibration ?



Figure 3. Global view of the 3D model (textures and triangle normals) computed from 2.7M points. The triangles in the sky are removed.
Top: the key-frame poses of the multi-camera are also drawn using small white points. Bottom: the normals are encoded by colors.

5.5.1 Notations

The first set is s = 2k as in Secs. 5.2 and 5.3: both SfM and
BA use the 2000 first frames of the video. The second set is
s = all, i.e. all frames of the video are used. In more detail,
SfM first uses the calibration above (provided by B90r,π/2

and s = 2k) on the whole multi-camera video, and BA then
refines all parameters including the calibration.

Set s = all∗ is s = all plus additional inter-camera
matches. These matches connect reconstructed tracks in
different cameras, i.e. they merge 3D points. They are com-
puted after the SfM step and before BA. Their matching is
made easier by prewarping onto a cylinder of the images
of every camera; a standard ZNCC-based correlation (as in
SfM) is then applied. In practice, we try to match points
of the i-th camera in the t-th key-frame with points of the
(i + 1)-th camera (indices modulo 4) in the (t + α)-key-
frame where α ∈ {−8,−7, · · ·+ 7,+8}.

5.5.2 Image-Based Evaluation

An image-based method is used to evaluate a central cali-
bration. With images from the 4 cameras at the same time
and a calibration, we warp the 4 images on a cylinder and
accumulate the gray level discrepancies over the cylinder
pixels where two images are warped. A discrepancy is the
absolute value of the differences between two luminances.
This process is done several times in the video (once per 10s
of video). The result is the mean of the discrepancies.

5.5.3 Experiments

Fig. 5 shows an example of a cylindrical image without
and with its discrepancies (Fig. 5 also shows that the com-
mon field-of-view between adjacent cameras is small). The
means of discrepancies are 14.51 for s = 2k, 13.97 for s =
all, and 13.63 for s = all∗ (gray levels in [0, 255]). Thus



Figure 4. Local views of the 3D model (textures and triangle normals). The normals are encoded by colors (ground: white, vertical:
red-green-blue, sky: black). Every key-frame pose is represented by four squares (one square per camera).

Figure 5. Cylinders without (top) and with (middle) discrepancies
in areas shared by two original images in case s=all∗. Bottom:
local views of discrepancies if s=all∗, s=all∗, s=all and s=2k, re-
spectively. The lower the discrepancy, the darker the gray level.

the improvements of all∗ over all and of all over 2k are
globally small. A joint video shows input frames and 360
videos using s = all∗ (https://youtu.be/8bZM20g1p0U).

The time of one successful BA iteration is 29s if s =
all (710k 3D points and 1.8k multi-camera 6D poses and
4*(3+4+5) calibration parameters are refined, 3.4M 2D in-
liers). Our implementation uses sparse implementation of
Hessian and Cholesky factorization of the reduced camera
system [28]. If s = all∗, there are 11k, 16k, 13k, and 16k
matches between cameras 0-1, 1-2, 2-3, and 3-0, resp.

Lastly, we make two observations in the cylindrical im-
ages. First, there are some local and non-negligible im-
provements like those at the bottom-right of Fig. 5. Sec-
ond, a textured ground in the close vicinity of the cameras
is a frequent reason for high discrepancy (one example can
be found in the bottom-left corner of Fig. 5). Indeed, the
central approximation is inaccurate in this area.

5.6. Limitations and Further Experiments

Our synchronization method (A90r in Sec. 5.2) is done
using monocular SfM for every camera at the beginning of
the dataset. Thus it can fail due to the lack of texture in
a camera during this period. Nevertheless, the robustness
with respect to low texture is improved thanks to (1) a mod-
ification of A90r, (2) our assumption that the same setup is
used for all cameras and (3) the fact that SfM robustness is
better for accurate calibration. First apply monocular SfM



and calibration refinement for one video that has a lot of
texture, then compute monocular SfM for the other (low
textured) videos with this refined calibration. Similarly, it is
straightforward to do the multi-camera refinement (Bc,r in
Sec. 5.3) for a low textured dataset by computing the multi-
camera calibration on a more textured dataset, then assume
that the calibration is similar between the two datasets.

In general, the number of inliers decreases in keyframes
where the assumptions are not meet and SfM can fail for
this reason. Shocks can generate changes of inter-camera
rotations and rolling shutter effects due to fast image mo-
tion. However, we think that shocks due to walking are
damped by the pedestrian. Another dataset has low frame-
rate (30 fps) and fast head rotations. This is more difficult
than our paper’s dataset: the synchronization is less accu-
rate and the rolling shutter effects are greater. To avoid fail-
ures of the synchronization and self-calibration, we increase
the number of inliers (multiply by 2 the inlier threshold) and
select a video segment for SfM with slow image motion.

6. Conclusion
This paper focuses on the synchronization and self-

calibration of a DIY multi-camera system mounted on a hel-
met. It presents large-scale 3D scene modeling using such
a setup for the first time. Thanks to the central approxima-
tion, 360 videos are also generated (although the common
field-of-view between adjacent cameras is small).

We start with structure-from-motion, then the instanta-
neous angular velocity (IAV) is known and the initial cali-
bration is refined by bundle adjustment (BA). Synchroniza-
tion methods are compared including ours which is based on
IAV. We extend previous BAs designed for multi-cameras:
both intrinsic parameters and inter-camera rotations are re-
fined, and the minimized errors are the true reprojection
errors (although the forward-projection is not closed-form
with the classical polynomial distortion model). We also
experiment our BA for several calibration parametrizations
and several sets of tracked points in images.

Future work includes a BA that simultaneously re-
fines geometry and sub-frame synchronization, a detailed
comparison of central and non-central self-calibrations for
multi-cameras like ours that are almost central, investiga-
tions on rolling shutter and non-constant calibration, and
improving the robustness with respect to low texture.
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