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Abstract

Image-based-interpolationcreates smooth and photo-
realistic views betweentwo view points. The conceptof
joint view triangulation (JVT) hasbeenprovento be an ef-
ficient multi-view representatiorto handlevisibility issue
However, the existing JVT, built only on a regular sampling
grid, oftenproducesundesiable artifacts for artificial ob-
jects. To tackle theseproblems,a new edge-constained
joint view triangulation is developedin this paperto inte-
gratecontourpointsandartificial rectilinearobjectsastri-

angulationconstaints. Also a supersamplingtechniqueis
introducedto refinevisible boundaries.Thenew algorithm
is successfullglemonstatedon manyreal image pairs.

1 Intr oduction

Image-based-interpolatiof23, 2, 16, 11, 12] is gaining
popularity for renderingsmoothtransitionbetweendiffer-
ent view points or for creatingtime-stoppingeffect [19].
The novel views directly renderedby imagesare more
photo-realistidchanclassicalCG geometricnodels[7, 22].
Reconstruction-basadnderingmethodsncludingimplicit
reconstructiorusingmatchingtensorq1, 10] is morepow-
erful asit may renderimagesat arbitrary view point with
very low computationatost,howeverreliabledenserecon-
structionis difficult to obtainwith the actualstateof art.
In contrary interpolationturnsout more stableresults[12]
while operatingonly in imagespace.

As imagesare only samplesof the actual3D sceneryin-
steadof full representationf the scene jmagedbasedn-
terpolationinherentsthe very difficult correspondencand
occlusionproblems absenfor computergeneratedmages
[2], [3]. This motivatedthe work [12] in which afive step
algorithmwaspresentedéhcludinganoriginaljoint view tri-
angulationinspiredby impostorg17] andmeshintegration
for rangedata[21, 18] to describgjointly the visibility of
two views. Thejoint view triangulationin [12] givesonly
a rough structurewhich worked well for outdoor natural
sceneriesput often have troubleswith the manufctured

objectsincluding building, variouskinds of posts... This
paperintroducesa newv edge-constrainepbint view trian-
gulationwhich integrateline sggmentsfrom the polygonal
approximationof contourpointsandan explicit modeling
for artificial rectilinearobjects.Anothernew featureis that
the boundarief the visible areasarerefinedby introduc-
ing asupersamplinggrid.

The paperis organizedasfollows. In Section2, we first re-
view the quasi-densenatchingalgorithm. Then,the new
edge-constrainegbint view triangulationis describedin
Section3. After the constrainedoint view triangulation,
we demonstrat¢his datarepresentationninterpolatingin-
betweenimagesfrom two referenceimagesin Section4.
Finally, someconcludingremarksandfuture directionsare
givenin Section5.

2 Review of quasi-densedisparity map con-
struction

In differentimagesmatchingeitherhigh-levelimageprim-
itivessuchasfeaturepointsandline segmentsor just pixels
is probablythe hardestpracticalproblemfor vision appli-
cations. It hasbeenparticularly studiedfor a stereorig in
whichtherelative orientationreduceghesearchspacdrom
the2D imageplaneto 1D alongepipolarlines[9, 5]. Mean-
while the stateof theart on matchingdoesnotyet give very
satisfiedgeneralresults. In fact, almostall matchingalgo-
rithmshavetroubleseitheronocclusionor untexturedareas.
This is not surprisingasthereis just no enoughinforma-
tion availablein theseareaswhich allow to make decision.
This hasmotivatedthedefinitionof aquasi-densenatching
[12]. Thekey remarkis thatthe disparitymapcould never
be everywheredensethe bestwe canhopeis only a setof
sparsehydistributeddenseregions. This quasi-densdispar
ity mapsuchdefinedis thereforea morerealisticgoal.

The constructionof quasi-denselisparity map startsfrom
matchingsome points of interestwhich have the highest
texturenessas seedpoints to bootstrapa region growing
type algorithm to propagatethe matchesin its neighbor
hoodfrom themosttextured(thereforemostreliable)pixels
to lesstexturedones.The algorithmcould thereforebe de-



scribedin two steps:Seedselectionrandpropagation.

SeedselectionPointsof interest[15, 13, 8] are naturally
goodseedpoint candidatesas points of interestareby its
very definitionimagepointswhich have the highestexture-
ness,.e. thelocal maximaof the auto-correlatiorfunction
of thesignal.

Sowe first extract pointsof interest[15] from two original

imagesthena ZNCC correlationmethodis usedto match
thepointsof interestacrosswo imagesfollowedby across
validationfor the pair of images. This givestheinitial list

of correspondencesortedby thecorrelationscore.

PropagationFromthe currentseedist whichis initialized

by the first step,at eachstep,we pull the bestmatchfrom

the list of seeds. Thenwe look for additionalmatchesn

the neighborhoodf the bestseed.The neighborsof a seed
pointis takento beall pixelswithin the5 x 5 window cen-
teredatit. For eachneighboringpixel of thefirstimage,we

first constructin the secondmagea list of tentatve match
candidatesvhich consistof all pixelsof a3 x 3 window in

the neighborhoof its correspondindocationin the sec-
ondimage(seeFigurel).
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Figure 1. Definition of neighborhoodV (a, A) of pixel
match(a, A). It is a setof matchesincludedin the two
5 x 5-neighborhoodVs(a) andNs(A) of pixelsa and A.
Possiblenatchedor b (resp.C) arein the3 x 3 blackframe
centeredat B (resp.c). Thecompletedefinitionof A (a, A)
is {(b, B),b € N5(a),B € N5(A),(B—A)—(b—a) €
{_17 0, 1}2}

A suchmatchneighborhoodenforcesthe continuity con-
straintand a disparity gradientlimit of one pixel for the
matchingresult. The matchingcriterionis still the ZNCC
correlationscorebut within a5 x 5 window, thereforeghost-
ing artifactsat the occludingcontoursarelimited.

Finally additionalmatchesn the neighborhoodf the cur-
rentseedpairareaddedsimultaneouslyn thematchlist and
the seedlist suchthat the unicity constraintis presered.

Thealgorithmterminatesvhenthe seedmatchlist becomes

empty

This algorithm could be efficiently implementedwith a
heapdata structurefor the seedpixels of the regions of
the matchedpoints. Notice thataseachtime only the best
matchis selected this drasticallylimits the possibility of

bad matches. For instance the seedselectionstepseems
very similar to mary existing methodg24, 20] for match-
ing pointsof interestusing correlation,but the crucial dif-
ferenceis thatwe needonly to take the mostreliable ones
ratherthantrying to matcha maximumof them. In some
extremecasespnly onegoodmatchof pointsof interestis
sufficientto provoke anavalancheof thewholetexturedim-
ages.This makesour algorithmmuchlessvulnerable.The
sameis truefor propagationtherisk of badpropagatioris
considerablaediminishedby the bestfirst stratgy over all
matchedoboundarypoints.

3 Edge-Constrained Joint View Triangula-
tion

Image interpolation relies exclusively on image content
with no depthinformation, triangulationis always neces-
saryfor computatiorefficiencgy andfor thatthe matchingis
hardlyanywheredense However, classicaindependentri-
angulationpperatedn eachindividualimage lackscontent
consisteng betweendifferentimages. Inspiredby jointly
triangulatinga setof rangedatain [18], theideaof triangu-
lating simultaneouslhandconsistentlytwo imageswasfirst
introducedfor imageinterpolationin [12] asjoint view tri-
angulationto handlethe visibility. Thealgorithmproposed
in [12] is built merelyon aregularsamplinggrid. It simpli-
fies the implementation but gives poor approximationfor
the visual events. Naturaloutdoorscenescould be nicely
handled but the algorithmoften producesundesirablerti-
factsfor artificial objects. The mosttypical artifactis the
‘brokenline’ phenomenoitilustratedin Figure2. To tackle
theseproblemsa new edge-constrainegint view triangu-
lation is developedin this sectionby introducingedgecon-
straintsand by explicitly modelingartificial rectilinearob-
jects. Also asupersamplingtechniquds alsointroducedo
refinetheboundarie®f visible areas.

Figure 2. The ‘brokenline’ artifact: The original image
of agrayboxonawhite backgrounds brokenontheborder
dueto non-appropriatenesh.

The consisteng for the edge-constrainepbint view trian-
gulationis definedasfollows.

1. There is one-to-onecorrespondencéetween the
matchedmagepoints;

2. Thereis one-to-oneconstrainedelaunayedgecor-
respondencen two images.Therearethreetypesof
Delaunayedgeconstraints:



Initialisation Rectilinear object insertion Line segment insertion

Insertion of visible patches Completion from the second grid

Figure 3. lllustrationof the differentstepsof the edge-constrairjbint view triangulation.

e Boundary edges of matched areas The
matchedareasfrom the quasi-densealisparity
maprepresenthecommonvisible visualevents
of the scenes. Their boundaryshould not be
crossedby ary othertriangles,they shouldbe
preseredandarenaturalconstraintg§12].

¢ Line segmentsThe mostdirectremedialmea-
suresfor brokenline artifactis to integrateim-
agecontourpointsasconstraints.Theline seg-
mentsare polygonal approximationof linked
contourpoints.

e Artificial rectilinear objectsArtificial rectilin-
earobjectssuchaselectricposts,trunks,... are
very frequentin outdoorscenes.They are of-
ten mishandleddueto the size of the sampling
grid which is limited by stability consideration
of fitting. Whentheir detectionand matching
is possible they arealsointegratedinto Delau-
nay constraints.An explicit modelingof these
objectsis presentedn thefollowing section.

3. Thetriangulationin eachimageis a constrainede-
launay triangulation due to its minimal roughness
property[14].

3.1 Algorithm

Putting all these constraints together the new edge-
constrainedoint view triangulationis implementedas an
incrementalinsertionalgorithmin both imagessimultane-
ously, consistingof five majorsteps Figure3 illustratesthe
evolution of the constructioralgorithm.

1. Initialization

The initial emptyimagesare triangulatedby the di-
agonalfrom the top left to bottomright cornerasil-
lustratedin Figure3.

2. Detectionof visible patches

Theraw quasi-densdisparitymapcouldnotbeused
directly asvisible pixelsasit may still be corrupted,

irregular and not structured. The goal is to uselo-
cal geometricconstrainteencodedy a planartrans-
formationto createreliablevisible patchesasvisible
content.

The first imageplaneis initially divided into a reg-
ular grid of 8 x 8 pixels squares. The scaleis a
trade-of betweenthe samplingresolutionand regu-
larisationstability. To increaseheresolutionasuper
samplinggrid by shiftingthefirst grid half-sizeof the
gridwidthis alsointroducedasillustratedin Figure4.
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Figure 4. Two overlappingregulargridsto subdvide the
firstimageinto squarepatches.

For eachsquarepatch, all matchedpoints inside it
from the disparitymapareobtained. A planetrans-
formationis tentatvely fitted to thesematchedoints.
Themostgeneralinear planetransformations a ho-
mographyrepresentethy a homogeneou8 x 3 non
singularmatrix. Four matchedpoints, no three of
themcollinear, aresufficient to estimatea planeho-
mography Notice that an affine transformationen-
codedby 6 d.o.f. ratherthana homographycould
alsobeusedif the perspectie distortionis moderate
betweerimages.

Becausea textured patchis rarely a perfectplanar
facetexcept for manufcturedobjects, the putative
transformationfor a patch can not be estimatedby
standardleast squaresestimators. Rolust methods
have to be adopted,which provide a reliable esti-
mateof thehomographyevenif someof thematched
pointsof thesquaregpatcharenotactuallylying onthe
commonplaneon which the majority lies. The Ran-
dom Sample ConsensugRANSAC) method origi-



Image 1

nally introducedby Fischlerand Bolles [6] is used
for robust estimationof the homography RANSAC
hasbeensuccessfullyusedfor robustcomputatiorof
thegeometrianatchingtiensorsn [20, 24]. If thecon-
sensusgor thetransformatioreache§5%, thesquare
patchis consideredasa valid planarpatch. The de-
limitation of the correspondingplanarpatchin the
secondmageis definedby mappingthefour corners
of the grid in the first imagewith the estimatedho-
mography This procesf fitting the squarepatchto
a homographyis first repeatedor all squarepatches
of thefirstimagefor the two samplinggrids.

Eachvalid planarpatchwill be divided into 2 trian-
glesalongoneof its diagonaldor furtherprocessing.

. Detectionand insertion of rectilinear structur es

The vertical rectilinear structuresare modeled as
setsof connectedvisible patches. First all vertical
triplets of patchesare detectedthenall overlapping
triplets are memged into connectinggroups. Finally
eachgroupis completedby the adjacentandvertical
squarecontaininga line sgment. The whole proce-
dureis illustratedin Figure 5.
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Figure 6. Top: two views of a small wood post. Mid-

dle: Thedisparitymapafterpropagatiorwith epipolarcon-
straintused. Bottom: The modelingof the small postand
thefinal JVT in which constraintedgesaredravn in black.

;
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Figure 5. lllustration of detectionof a rectilinear ob-
ject (left) whosewidth is aboutthe size of actualsampling
grid. Middle: all correspondingertical triplets of visible
patcheswithout left andright patchneighborsarefirst de-
tected. Right: all overlappingtriplets of patchesform a
connectinggroup. The vertical squaresvhich sharea line

segmentwith thegroupareattachedo thegroup.

Thesegroupsof connectingpatchesareinsertedinto
thecurrentjoint triangulation.A realexamplefor de-
tectinga smallwood poston the foregroundandthe
consequentriangulationis shavn in Figure®.

. Detectionand insertion of line segments

The contourpointsaslocal maximaof gradientedge
pointsarefirst detectedby a Canry-lik e detectorf4],
thenconnectingontourpointsarelinkedandapprox-
imatedby line sggments.This proceduras only per
formedonthefirstimage.We do notwishto directly

matchline sgmentsin two imagesassucha proce-
dureis hardlystable.A deductionmethodillustrated
in Figure7 is implementedvhich deduceghe corre-
spondingline segmentin the secondmagefrom the
disparitymap.

For ary line sggmentdetectedn the first image,all
correspondingpointsin theneighborhooaf the end-
pointsof theline sggmentareobtainedfrom the dis-
parity map.A tentatize 1D transformatiorontheline
segmentin two imagesis estimated.This 1D trans-
formationmightbe projectve encodedy a2 x 2 ho-
mographyby takingtwo endpointsandonemidpoint
obtainedfrom the epipolargeometry If the epipo-
lar geometryis not available,anaffine transformation
definedby two endpointss estimated.

Thesecondstageof thealgorithmre-samplesheline

segmentby regularly dividing it into smallerparts.
Eachsggmentpartis validatedby takinginto account
the numberof the match points aroundit from the

disparitymap. Thefinal line sggmentis selectedas
theonewhich maximizeshenumberf matchedseay-

mentparts.

Thecorrespondindine segmentis insertedn thecur-
rentjoint triangulationwhile not violating the exist-
ing constraints. If it crossesary existing constraint
edge theline segmentis further splittedfor inserting
only its non-intersectingarts.



f(A)

f(E)

Figure 7. lllustrative figure for the deductionof corre-
spondingline segments. AE is a line segmentdetectedn

the first image. A tentatve correspondindine sggment
f(A)(E) is definedby the neighboringpoints of A andE
so thata 1D homographyf is fitted to all contourpoints
along the sggment. The segmentAE is regularly divided
into smallerpartsAB,BC,CD,DEandeachoneis validated
by countingthe numberof matchesvhich satisfyf in their
neighborhood. For instance,matchesl and 2 satisfy the
homographywhile 3 and4 do not. The segmentf(A)f(E)

which maximizesthe numberof acceptedsmallerpartsis
acceptedo definethe validatedparts,for instanceBC and
f(B)f(C).

5. Insertion of visible patchesfrom first sampling
grid
All visible patchedrom thefirst samplinggrid which

donotintersectith ary existing constrainedgesare
insertedinto the currentjoint view triangulation.

6. Boundary refinement from the supersampling
grid
First, all verticesof visible patchedrom the shifted
grid areinsertedf they areoutsidethe currentvisible
patchesn thejoint view triangulation. Thetriangles
touchingthecurrentboundariesreconsidere@svis-
ible oneswhoseedgesarethe new boundarie®f the
matchedareasif the matchpropagatiorsucceedsn
thesetriangles.

4 Examples

Thenew edge-constrairjbint view triangulationalgorithm
hasbeendemonstratedn mary realimagepairs. Mpeg se-
guence®f interpolatedmagescouldbe playedat our Web
site***. All in-betweerimagesparameterizetly A € [0, 1]
is generatedisingthe samepseudo-paintes algorithmas
[12].

Figure 8. Two framesof the original gardenflower se-
guence.

Figure 9 shovs a comparatve resulton two imagesfrom
thepublicdomainflowergardenmpeg sequencéFigure8).
We caneasilynoticethreebrokenline artifacts: oneon the
upperpartof thetree,oneonthe middle of thetreeandone
on the backgroundoblique white post. Most of thesearti-
factsareremovedwith the edge-constrainechethodexcept
theonein themiddle of thetreepersists.

Onetypical exampleof a pair of outdoorbuilding imagess
illustratedin Figure10. This exampleis difficult for several
reasons.

¢ Theleavesarehardlymatchedhsthetexturedisparity
is big andthereis alsoshortageof seedmatches.

¢ Theepipolarlines arealmostorientedthe sameway
asthescenehorizontaldirection. It makesthematch-
ing of vertical structureeasiemwhile it doesnot help
matching the horizontal structuresof the building.
Thematchingerrorfor horizontaledgesof the build-
ing andpavementmayreachseveralpixels.

e Theuppersky areaandthelowerroadareaarealmost
textureless.

Very goodresultsareobtainedasshawn in Figure10. We
cannaticethatin additionto thetwo front posts,two ‘false
posts’arealsocreatedon the backgrouncdbn the right side
of theimage,but it makesno damagéor the interpolation
resultsillustratedin Figurel1l.

Dueto spacdimitation, we shav only theinterpolationre-
sultsof anotherexamplein Figure12.

5 Conclusionand futur e work

We have presente new edge-constrainej@int view trian-
gulationfor interpolatingtwo images. Unlike the existing
joint view triangulationwhich builds only onaregularsam-
pling grid, the new algorithmintegratesline segmentsand
explicit artificial rectilinearobjects.A supersamplinggrid
is also usedto refine the meshboundariedor the visible
areas. The quality of renderingresultsis improvedin oc-
cludingcontoursvherehumaneyesareextremelysensitve.



Figure 11. Somesamplef theinterpolatedriewsat A = 0, 0.2, 0.4, 0.6, 0.8, 1 from left to right. The Mpeg file is alsoavailable
for reviewersasMovie 1.

Figure 12. Somesamplef the interpolatedviews at A\ = 0.2, 0.4, 0.6, 0.8 from left to right for a outdoorstreetscene. The
Mpeg file is alsoavailablefor reviewersasMovie 2.

Figure 9. Top: joint view triangulationwithout edgecon-
straintof the flowergardenimagepair. Middle : joint view
triangulationwith edgeconstraint. Bottom: oneframe of
the interpolatedsequencewith (right) and without (left)
edgeconstraint. The edgesin black are the constraints
andthosein white are Delaunay For JVT without edge
constraint,only the bordersof the matchedareasare con-

strainededges,broken line artifacts appearon the upper
and middle part of the front tree andin the middle of the

white oblique poston the background.For JVT with edge
constraintsthe above mentionedartifactsareconsiderably
reducedpnly onthemiddle partof thefront treepersists.

Figure 10. Top: theoriginalimagepair. Middle : theleft
is the edgeimageof thefirst frameandtheright oneis the
disparitymap. Bottom: the constrainfoint view triangula-
tion in two images.



We areactuallyinvestigatemore advancedsupersampling
methodsto the refinementof the boundariesand working
onmulti-view joint view triangulationalgorithms.
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