
Edge-ConstrainedJoint View Triangulation for Image Inter polation

MaximeLHUILLIER LongQUAN
CNRS-GRAVIR-INRIA

ZIRST – 655avenuedel’Europe
38330Montbonnot,France

Abstract

Image-based-interpolationcreates smooth and photo-
realistic views betweentwo view points. The conceptof
joint view triangulation(JVT)hasbeenprovento bean ef-
ficient multi-view representationto handlevisibility issue.
However, theexistingJVT, built onlyon a regular sampling
grid, oftenproducesundesirableartifacts for artificial ob-
jects. To tackle theseproblems,a new edge-constrained
joint view triangulation is developedin this paperto inte-
gratecontourpointsandartificial rectilinearobjectsastri-
angulationconstraints. Alsoa super-samplingtechniqueis
introducedto refinevisibleboundaries.Thenew algorithm
is successfullydemonstratedonmanyreal imagepairs.

1 Intr oduction
Image-based-interpolation[23, 2, 16, 11, 12] is gaining
popularity for renderingsmoothtransitionbetweendiffer-
ent view points or for creatingtime-stoppingeffect [19].
The novel views directly renderedby imagesare more
photo-realisticthanclassicalCG geometricmodels[7, 22].
Reconstruction-basedrenderingmethodsincludingimplicit
reconstructionusingmatchingtensors[1, 10] is morepow-
erful as it may renderimagesat arbitraryview point with
very low computationalcost,howeverreliabledenserecon-
structionis difficult to obtain with the actualstateof art.
In contrary, interpolationturnsout morestableresults[12]
while operatingonly in imagespace.

As imagesare only samplesof the actual3D sceneryin-
steadof full representationof the scene,imagedbasedin-
terpolationinherentsthe very difficult correspondenceand
occlusionproblems,absentfor computergeneratedimages
[2], [3]. This motivatedthework [12] in which a five step
algorithmwaspresentedincludinganoriginal joint view tri-
angulationinspiredby impostors[17] andmeshintegration
for rangedata[21, 18] to describejointly the visibility of
two views. The joint view triangulationin [12] givesonly
a rough structurewhich worked well for outdoornatural
sceneries,but often have troubleswith the manufactured

objectsincluding building, variouskinds of posts... This
paperintroducesa new edge-constrainedjoint view trian-
gulationwhich integrateline segmentsfrom the polygonal
approximationof contourpointsandan explicit modeling
for artificial rectilinearobjects.Anothernew featureis that
theboundariesof thevisible areasarerefinedby introduc-
ing asuper-samplinggrid.

Thepaperis organizedasfollows. In Section2, we first re-
view the quasi-densematchingalgorithm. Then, the new
edge-constrainedjoint view triangulation is describedin
Section3. After the constrainedjoint view triangulation,
wedemonstratethisdatarepresentationon interpolatingin-
betweenimagesfrom two referenceimagesin Section4.
Finally, someconcludingremarksandfuturedirectionsare
givenin Section5.

2 Review of quasi-densedisparity map con-
struction

In differentimages,matchingeitherhigh-level imageprim-
itivessuchasfeaturepointsandline segmentsor justpixels
is probablythe hardestpracticalproblemfor vision appli-
cations. It hasbeenparticularlystudiedfor a stereorig in
whichtherelativeorientationreducesthesearchspacefrom
the2D imageplaneto 1D alongepipolarlines[9, 5]. Mean-
while thestateof theartonmatchingdoesnotyetgivevery
satisfiedgeneralresults. In fact,almostall matchingalgo-
rithmshavetroubleseitheronocclusionoruntexturedareas.
This is not surprisingas thereis just no enoughinforma-
tion availablein theseareaswhich allow to make decision.
Thishasmotivatedthedefinitionof aquasi-densematching
[12]. Thekey remarkis that thedisparitymapcouldnever
beeverywheredense,thebestwe canhopeis only a setof
sparselydistributeddenseregions.Thisquasi-densedispar-
ity mapsuchdefinedis thereforeamorerealisticgoal.

The constructionof quasi-densedisparitymapstartsfrom
matchingsomepoints of interestwhich have the highest
texturenessas seedpoints to bootstrapa region growing
type algorithm to propagatethe matchesin its neighbor-
hoodfrom themosttextured(thereforemostreliable)pixels
to lesstexturedones.Thealgorithmcould thereforebede-



scribedin two steps:Seedselectionandpropagation.

SeedselectionPointsof interest[15, 13, 8] are naturally
goodseedpoint candidates,aspointsof interestareby its
verydefinitionimagepointswhichhavethehighesttexture-
ness,i.e. the local maximaof theauto-correlationfunction
of thesignal.

Sowe first extractpointsof interest[15] from two original
images,thena ZNCC correlationmethodis usedto match
thepointsof interestacrosstwo images,followedby across
validationfor the pair of images.This givesthe initial list
of correspondencessortedby thecorrelationscore.

PropagationFromthecurrentseedlist which is initialized
by the first step,at eachstep,we pull the bestmatchfrom
the list of seeds.Thenwe look for additionalmatchesin
theneighborhoodof thebestseed.Theneighborsof a seed
point is takento beall pixelswithin the

�����
window cen-

teredat it. For eachneighboringpixel of thefirst image,we
first constructin thesecondimagea list of tentative match
candidateswhichconsistsof all pixelsof a � � � window in
the neighborhoodof its correspondinglocationin the sec-
ondimage(seeFigure1).
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A suchmatchneighborhoodenforcesthe continuity con-
straint and a disparity gradientlimit of one pixel for the
matchingresult. The matchingcriterion is still the ZNCC
correlationscorebut within a

�0�<�
window, thereforeghost-

ing artifactsat theoccludingcontoursarelimited.

Finally additionalmatchesin the neighborhoodof thecur-
rentseedpairareaddedsimultaneouslyin thematchlist and
the seedlist suchthat the unicity constraintis preserved.
Thealgorithmterminateswhentheseedmatchlist becomes
empty.

This algorithm could be efficiently implementedwith a
heapdata structurefor the seedpixels of the regions of
thematchedpoints. Notice thataseachtime only the best
matchis selected,this drasticallylimits the possibility of

badmatches.For instance,the seedselectionstepseems
very similar to many existing methods[24, 20] for match-
ing pointsof interestusingcorrelation,but the crucial dif-
ferenceis thatwe needonly to take the mostreliableones
ratherthantrying to matcha maximumof them. In some
extremecases,only onegoodmatchof pointsof interestis
sufficientto provokeanavalancheof thewholetexturedim-
ages.This makesour algorithmmuchlessvulnerable.The
sameis true for propagation,therisk of badpropagationis
considerablediminishedby the bestfirst strategy over all
matchedboundarypoints.

3 Edge-Constrained Joint View Triangula-
tion

Image interpolation relies exclusively on image content
with no depthinformation, triangulationis always neces-
saryfor computationefficiency andfor thatthematchingis
hardlyanywheredense.However, classicalindependenttri-
angulation,operatedin eachindividualimage,lackscontent
consistency betweendifferent images. Inspiredby jointly
triangulatingasetof rangedatain [18], theideaof triangu-
latingsimultaneouslyandconsistentlytwo imageswasfirst
introducedfor imageinterpolationin [12] asjoint view tri-
angulationto handlethevisibility. Thealgorithmproposed
in [12] is built merelyona regularsamplinggrid. It simpli-
fies the implementation,but givespoor approximationfor
the visual events. Naturaloutdoorscenescould be nicely
handled,but thealgorithmoftenproducesundesirablearti-
factsfor artificial objects. The most typical artifact is the
‘brokenline’ phenomenonillustratedin Figure2. To tackle
theseproblems,a new edge-constrainedjoint view triangu-
lation is developedin this sectionby introducingedgecon-
straintsandby explicitly modelingartificial rectilinearob-
jects.Also asuper-samplingtechniqueis alsointroducedto
refinetheboundariesof visibleareas.

Figure 2. The ‘broken line’ artifact: Theoriginal image
of agrayboxonawhitebackgroundis brokenontheborder
dueto non-appropriatemesh.

The consistency for the edge-constrainedjoint view trian-
gulationis definedasfollows.

1. There is one-to-onecorrespondencebetween the
matchedimagepoints;

2. Thereis one-to-oneconstrainedDelaunayedgecor-
respondencein two images.Therearethreetypesof
Delaunayedgeconstraints:
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Figure 3. Illustrationof thedifferentstepsof theedge-constraintjoint view triangulation.

= Boundary edges of matched areas The
matchedareasfrom the quasi-densedisparity
maprepresentthecommonvisiblevisualevents
of the scenes. Their boundaryshouldnot be
crossedby any other triangles,they shouldbe
preservedandarenaturalconstraints[12].

= Line segmentsThe mostdirect remedialmea-
suresfor brokenline artifact is to integrateim-
agecontourpointsasconstraints.Theline seg-
mentsare polygonal approximationof linked
contourpoints.

= Artificial rectilinear objectsArtificial rectilin-
earobjectssuchaselectricposts,trunks,... are
very frequentin outdoorscenes.They areof-
ten mishandleddueto the sizeof the sampling
grid which is limited by stability consideration
of fitting. When their detectionandmatching
is possible,they arealsointegratedinto Delau-
nay constraints.An explicit modelingof these
objectsis presentedin thefollowing section.

3. Thetriangulationin eachimageis a constrainedDe-
launay triangulation due to its minimal roughness
property[14].

3.1 Algorithm

Putting all these constraints together, the new edge-
constrainedjoint view triangulationis implementedas an
incrementalinsertionalgorithmin both imagessimultane-
ously, consistingof fivemajorsteps.Figure3 illustratesthe
evolutionof theconstructionalgorithm.

1. Initialization

The initial empty imagesaretriangulatedby the di-
agonalfrom the top left to bottomright cornerasil-
lustratedin Figure3.

2. Detectionof visible patches

Theraw quasi-densedisparitymapcouldnot beused
directly asvisible pixelsasit maystill becorrupted,

irregular and not structured. The goal is to uselo-
cal geometricconstraintsencodedby a planartrans-
formationto createreliablevisible patchesasvisible
content.

The first imageplaneis initially divided into a reg-
ular grid of > � > pixels squares. The scale is a
trade-off betweenthe samplingresolutionandregu-
larisationstability. To increasetheresolutionasuper-
samplinggrid by shiftingthefirst grid half-sizeof the
grid width is alsointroducedasillustratedin Figure4.

First grid

Second grid

Figure 4. Two overlappingregulargridsto subdivide the
first imageinto squarepatches.

For eachsquarepatch,all matchedpoints inside it
from the disparitymapareobtained.A planetrans-
formationis tentativelyfittedto thesematchedpoints.
Themostgenerallinearplanetransformationis a ho-
mographyrepresentedby a homogeneous� � � non
singularmatrix. Four matchedpoints, no threeof
themcollinear, aresufficient to estimatea planeho-
mography. Notice that an affine transformationen-
codedby 6 d.o.f. rather than a homographycould
alsobeusedif theperspective distortionis moderate
betweenimages.

Becausea textured patch is rarely a perfectplanar
facet except for manufacturedobjects,the putative
transformationfor a patchcan not be estimatedby
standardleastsquaresestimators. Robust methods
have to be adopted,which provide a reliable esti-
mateof thehomographyevenif someof thematched
pointsof thesquarepatcharenotactuallylying onthe
commonplaneon which themajority lies. TheRan-
dom SampleConsensus(RANSAC) methodorigi-
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nally introducedby Fischlerand Bolles [6] is used
for robustestimationof the homography. RANSAC
hasbeensuccessfullyusedfor robustcomputationof
thegeometricmatchingtensorsin [20, 24]. If thecon-
sensusfor thetransformationreaches? ��@ , thesquare
patchis consideredasa valid planarpatch. The de-
limitation of the correspondingplanarpatch in the
secondimageis definedby mappingthefour corners
of the grid in the first imagewith the estimatedho-
mography. This processof fitting thesquarepatchto
a homographyis first repeatedfor all squarepatches
of thefirst imagefor thetwo samplinggrids.

Eachvalid planarpatchwill be divided into 2 trian-
glesalongoneof its diagonalsfor furtherprocessing.

3. Detectionand insertion of rectilinear structur es

The vertical rectilinear structuresare modeledas
setsof connectedvisible patches. First all vertical
triplets of patchesaredetected,thenall overlapping
triplets are merged into connectinggroups. Finally
eachgroupis completedby theadjacentandvertical
squarecontaininga line segment. The wholeproce-
dureis illustratedin Figure 5.

(A) (B) (C)

?

Image 1 2 1 2 1 2

Figure 5. Illustration of detectionof a rectilinear ob-
ject (left) whosewidth is aboutthesizeof actualsampling
grid. Middle : all correspondingvertical triplets of visible
patcheswithout left andright patchneighborsarefirst de-
tected. Right: all overlappingtriplets of patchesform a
connectinggroup. The vertical squareswhich sharea line
segmentwith thegroupareattachedto thegroup.

Thesegroupsof connectingpatchesareinsertedinto
thecurrentjoint triangulation.A realexamplefor de-
tectinga smallwoodposton the foregroundandthe
consequenttriangulationis shown in Figure6.

4. Detectionand insertion of line segments

Thecontourpointsaslocal maximaof gradientedge
pointsarefirst detectedby a Canny-likedetector[4],
thenconnectingcontourpointsarelinkedandapprox-
imatedby line segments.This procedureis only per-
formedon thefirst image.We donot wish to directly

Figure 6. Top: two views of a small wood post. Mid-
dle: Thedisparitymapafterpropagationwith epipolarcon-
straintused.Bottom: Themodelingof thesmallpostand
thefinal JVT in whichconstraintedgesaredrawn in black.

matchline segmentsin two imagesassucha proce-
dureis hardlystable.A deductionmethodillustrated
in Figure7 is implementedwhich deducesthecorre-
spondingline segmentin thesecondimagefrom the
disparitymap.

For any line segmentdetectedin the first image,all
correspondingpointsin theneighborhoodof theend-
pointsof the line segmentareobtainedfrom thedis-
paritymap.A tentative1D transformationontheline
segmentin two imagesis estimated.This 1D trans-
formationmightbeprojectiveencodedby a A � A ho-
mographyby takingtwo endpointsandonemidpoint
obtainedfrom the epipolargeometry. If the epipo-
lar geometryis notavailable,anaffinetransformation
definedby two endpointsis estimated.

Thesecondstageof thealgorithmre-samplestheline
segmentby regularly dividing it into smallerparts.
Eachsegmentpartis validatedby takinginto account
the numberof the matchpoints aroundit from the
disparitymap. The final line segmentis selectedas
theonewhichmaximizesthenumberof matchedseg-
mentparts.

Thecorrespondingline segmentis insertedin thecur-
rent joint triangulationwhile not violating the exist-
ing constraints.If it crossesany existing constraint
edge,theline segmentis furthersplittedfor inserting
only its non-intersectingparts.
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Figure 7. Illustrative figure for the deductionof corre-
spondingline segments.AE is a line segmentdetectedin
the first image. A tentative correspondingline segment
f(A)f(E) is definedby the neighboringpoints of A andE
so that a 1D homographyf is fitted to all contourpoints
along the segment. The segmentAE is regularly divided
into smallerpartsAB,BC,CD,DEandeachoneis validated
by countingthenumberof matcheswhich satisfyf in their
neighborhood.For instance,matches1 and 2 satisfy the
homographywhile 3 and4 do not. The segmentf(A)f(E)
which maximizesthe numberof acceptedsmallerpartsis
acceptedto definethevalidatedparts,for instanceBC and
f(B)f(C).

5. Insertion of visible patches fr om first sampling
grid

All visiblepatchesfrom thefirst samplinggrid which
donot intersectwith any existingconstraintedgesare
insertedinto thecurrentjoint view triangulation.

6. Boundary refinement fr om the super-sampling
grid

First, all verticesof visible patchesfrom the shifted
grid areinsertedif they areoutsidethecurrentvisible
patchesin the joint view triangulation.Thetriangles
touchingthecurrentboundariesareconsideredasvis-
ible oneswhoseedgesarethenew boundariesof the
matchedareasif the matchpropagationsucceedsin
thesetriangles.

4 Examples

Thenew edge-constraintjoint view triangulationalgorithm
hasbeendemonstratedonmany realimagepairs.Mpeg se-
quencesof interpolatedimagescouldbeplayedat our Web
site***. All in-betweenimagesparameterizedby B�CED FHG"I"J
is generatedusingthe samepseudo-painter’s algorithmas
[12].

Figure 8. Two framesof the original gardenflower se-
quence.

Figure 9 shows a comparative result on two imagesfrom
thepublicdomainflowergardenmpeg sequence(Figure8).
We caneasilynoticethreebrokenline artifacts:oneon the
upperpartof thetree,oneon themiddleof thetreeandone
on the backgroundobliquewhite post. Most of thesearti-
factsareremovedwith theedge-constrainedmethodexcept
theonein themiddleof thetreepersists.

Onetypicalexampleof apairof outdoorbuilding imagesis
illustratedin Figure10. Thisexampleis difficult for several
reasons.

= Theleavesarehardlymatchedasthetexturedisparity
is big andthereis alsoshortageof seedmatches.

= Theepipolarlinesarealmostorientedthe sameway
asthescenehorizontaldirection.It makesthematch-
ing of verticalstructureeasierwhile it doesnot help
matching the horizontal structuresof the building.
Thematchingerrorfor horizontaledgesof thebuild-
ing andpavementmayreachseveralpixels.

= Theuppersky areaandthelowerroadareaarealmost
textureless.

Very goodresultsareobtainedasshown in Figure10. We
cannoticethat in additionto thetwo front posts,two ‘f alse
posts’arealsocreatedon thebackgroundon theright side
of the image,but it makesno damagefor the interpolation
resultsillustratedin Figure11.

Dueto spacelimitation, we show only theinterpolationre-
sultsof anotherexamplein Figure12.

5 Conclusionand futur e work

Wehavepresentedanew edge-constrainedjoint view trian-
gulationfor interpolatingtwo images.Unlike the existing
joint view triangulationwhichbuildsonly onaregularsam-
pling grid, the new algorithmintegratesline segmentsand
explicit artificial rectilinearobjects.A super-samplinggrid
is also usedto refine the meshboundariesfor the visible
areas.The quality of renderingresultsis improved in oc-
cludingcontourswherehumaneyesareextremelysensitive.
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Figure 11. Somesamplesof theinterpolatedviewsat K�LE7M
7!; N4
%7M; O�
#7!; P!
#7M; QM
*5 from left to right. TheMpeg file is alsoavailable
for reviewersasMovie 1.

Figure 12. Somesamplesof the interpolatedviews at KRLS7!; N!
#7M; OM
#7M; PM
#7!; Q from left to right for a outdoorstreetscene.The
Mpeg file is alsoavailablefor reviewersasMovie 2.

Figure 9. Top: joint view triangulationwithoutedgecon-
straintof theflowergardenimagepair. Middle : joint view
triangulationwith edgeconstraint.Bottom: oneframeof
the interpolatedsequencewith (right) and without (left)
edgeconstraint. The edgesin black are the constraints
and thosein white are Delaunay. For JVT without edge
constraint,only the bordersof the matchedareasarecon-
strainededges,broken line artifactsappearon the upper
andmiddle part of the front treeandin the middle of the
white obliqueposton thebackground.For JVT with edge
constraints,theabove mentionedartifactsareconsiderably
reduced,only on themiddlepartof thefront treepersists.

Figure 10. Top: theoriginal imagepair. Middle : theleft
is theedgeimageof thefirst frameandtheright oneis the
disparitymap.Bottom: theconstraintjoint view triangula-
tion in two images.
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We areactuallyinvestigatemoreadvancedsuper-sampling
methodsto the refinementof the boundariesandworking
onmulti-view joint view triangulationalgorithms.
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