
Localization in urban environments : monocular vision compared to a
differential GPS sensor

Eric Royer Maxime Lhuillier Michel Dhome Thierry Chateau

LASMEA, UMR6602 CNRS and Blaise Pascal University
24 Avenue des Landais
63177 Aubière CEDEX

Eric.ROYER@lasmea.univ-bpclermont.fr

Abstract

In this paper we present a method for computing the lo-
calization of a mobile robot with reference to a learning
video sequence. The robot is first guided on a path by a
human, while the camera records a monocular learning se-
quence. Then a 3D reconstruction of the path and the en-
vironment is computed off line from the learning sequence.
The 3D reconstruction is then used for computing the pose
of the robot in real time (30 Hz) in autonomous navigation.
Results from our localization method are compared to the
ground truth measured with a differential GPS.

1. Introduction

We address the problem of real time localization in urban
environment. Our goal is to develop a mobile robot able to
navigate autonomously on a long distance path (from sev-
eral hundred meters, to a few kilometers). We guide the
robot manually for some time and record a reference video
sequence. Then the robot should be able to follow the same
trajectory by itself. For this application, we have devel-
oped a system that builds a three dimensional model of the
robot’s environment using only visual data recorded during
the learning phase. After that, when the robot is near the
learning trajectory, it is possible to use the current frame
taken by the camera to localize the robot in real time. The
only sensor used is a calibrated camera. An overview of the
process is illustrated in figure 1. Map building is the more
complex part of the algorithm. Fortunately, this part of the
computation can be done off line. So the real time constraint
applies only to the localization of the robot. That means that
we can use computation intensive algorithms to build a good
map. We think that a global and costly optimization step is
necessary for practical cases, both for accuracy and robust-

Visual memory

Current image
pose

Current robot
process

localisation
Online

key frames
Set of

Sequence
Video

Reconstruction
3D

Subsampling
manually guided path

Learning the

(Offline computation)

Figure 1. An overview of our vision system

ness under our hypothesis. Ego-motion estimation or visual
odometry which do not use a global optimization have been
proposed for example by D. Nistér et al. [13], but the accu-
racy is not as good as error build up over time.

In many applications, localization is provided by a GPS
(Global Positioning System) sensor. A differential GPS
(DGPS) has an accuracy of a few centimeters if enough
satellites are visible, so it is good enough for mobile robot
navigation. Unfortunately the GPS doesn’t work well in ur-
ban environments where tall buildings can occlude the satel-
lite signals. Moreover the signals can reflect on the build-
ings and corrupt the localization results. The worst case is
when the robot is in a narrow street (6 m wide), also called
an urban canyon. In this case, all the visible satellites must
lie in the same vertical plane, which is a bad situation for
computing a localization. On the other hand, this kind of
environment has a lot of information to offer to a vision sys-
tem, because there are a lots of features near the robot. So



our goal is to make a system suitable to urban environments
that can provide localization information with the same ac-
curacy as a DGPS. At the end of this paper, our localization
results are compared to those obtained by a DGPS sensor.

A solution for visual navigation with reference to a pre-
recorded image sequence was presented by Yoshio Mat-
sumoto et al. [11] but the method did not provide the pose of
the robot at each frame. Seung-Hun Jeon et al. [9] proposed
a method that allows to compute the pose of the robot in
the case of indoor environments with horizontal and vertical
planes. In our case, we want to be able to find a localiza-
tion in an outdoor environment without assumptions on the
geometry of the scene. An approach closer to ours has been
proposed by Kiyosumi Kidono et al. [10]. After a human
guided phase, the robot builds a map of the environment
and uses it to localize itself in autonomous navigation. This
system relies both on vision and odometry. Additionally it
assumes a calibrated stereo rig for vision data acquisition
and movements are done in 2D on a ground plane. In our
case we use only one camera and no odometry, the ground
doesn’t have to be planar. Recently, the idea of using a vi-
sual memory has been proposed by Remazeilles et al. [15].
In this approach, the path is modeled as a set of key frames
and the robot goes from one frame to the next by visual ser-
voing. This approach avoids building a 3D reconstruction
but is not able to provide a 3D localization of the robot. The
human guided approach is different from the Simultaneous
Localization And Mapping (SLAM) because in our case,
the landmarks are visible in a short period of time. They
can’t be observed again and again. Recently, monocular
SLAM has been developed. For example the work of Davi-
son [3] provides a way of computing the camera pose in real
time with only one camera. But this approach assumes that
the landmark database is kept small (under about 100 land-
marks). This is well suited for computing localization in a
room but not in a street where landmarks can be observed
for a few meters and are replaced by new ones.

In section 2 we present the method used to build the map
from the reference image sequence. Then in section 3 the
method used to compute the localization of the robot in real
time is detailed. Finally we present some results in section 4
and we compare them with the ground truth obtained with
a differential GPS sensor.

2. Reconstruction of the reference sequence

2.1. Overview

The goal of the reconstruction is to obtain the position of
a subset of the cameras in the reference sequence as well as
a set of landmarks and their 3D location, all of these given
in a global coordinate system. For the reconstruction we
use a calibrated monocular image sequence. For our exper-

iments, the camera was calibrated using a planar calibration
pattern. Camera calibration is important because the wide
angle lens we used has a strong radial distortion. Knowing
the internal parameters and distortion coefficients makes the
structure from motion more robust and increases the accu-
racy of the reconstruction. In addition, it works even if the
scene is planar in some images, which is not the case for
uncalibrated approaches (for example [2], [14]).

Every step in the reconstruction as well as the localiza-
tion relies on image matching. Matching a pair of images
is done by detecting interest points in each image. Harris
corner detector [6] is used for this step. For each interest
point in image 1, we select some candidate corresponding
points in a region of interest defined in image 2. Then a
Zero Normalized Cross Correlation score is computed be-
tween interest point neighborhoods. And the pairs with the
best scores are kept to provide a list of corresponding point
pairs between the two images. Matching images this way
may sound too slow for a real time application, but it is
possible to implement a very efficient corner detector using
SIMD extensions of modern processors.

In the first step of the reconstruction, we extract a set
of key frames from the reference sequence. Then we com-
pute the epipolar geometry and camera motion between key
frames. Additionally, the interest points used to compute
the epipolar geometry are reconstructed in 3D. These points
will be the landmarks used for the localization during the
on-line phase. They are stored with their neighborhood in
the images so that it is possible to match them with interest
points detected in new images.

2.2. Key frame selection

If there is not enough camera motion between two
frames, the computation of the epipolar geometry is an ill
conditioned problem. So we select images so that there is as
much camera motion between key frames while still being
able to match the images. The first image of the sequence
is always selected as a key frame, it is noted I1. The second
key frame I2 is chosen so that there is at least M common
interest points between I1 and I2. Then when key frames
I1 through In are chosen, we select key frame In+1 so that
there is at least M interest points in common between In+1

and In and at least N common points between In+1 and
In−1. This ensures that there are enough point matches be-
tween key frame to compute camera motion. In our experi-
ments we detect 1500 interest points in each frame and we
choose M = 400 and N = 300.

2.3. Camera motion computation

At this point we have a subset of the frames from the
video sequence recorded during the learning step. The



structure and motion algorithm used to build a 3D recon-
struction of the scene and camera motion can be separated
in three parts. With the first three key frames we compute
the camera motion over the three frames by computing an
essential matrix. Then for each successive set of three im-
ages, the motion is computed using a pose estimation algo-
rithm. These computations produce an initial estimate of
the camera motion, and a hierarchical bundle adjustment is
used to refine this initial estimation.

For the first image triplet, the computation of the cam-
era motion is done with the method proposed by Nistér [12]
for three views. It involves computing the essential matrix
between the first and last images of the triplet using a sam-
ple of 5 point correspondences. Computing the essential
matrix E between two images is done by writing the epipo-
lar constraint each of the 5 points projections must verify :
q′i

T

Eqi = 0,∀i ∈ {1..5} and a 6th relation that is verified
by any essential matrix :EET E − 1

2 trace(EET )E = 0.
These relations lead to a 10th order polynomial equation, so
there are at most 10 solutions for E. Each matrix E gives 4
solutions for (R, T ). The solutions for which at least one of
the 5 points is not reconstructed in front of both cameras are
discarded. Then the pose of the remaining camera is com-
puted with 3 out of the 5 points in the sample. This process
is done with a RANSAC [4] approach : each 5 point sam-
ple produces a number of hypotheses for the three cameras.
The best one is chosen by computing the reprojection error
over the three views for all the matched interest points and
keeping the one with the higher number of inlier matches.

We need an algorithm to compute the pose of the second
camera. A review of calibrated pose estimation algorithms
is given by Haralick et al. [5]. If the internal parameters
of the camera are known, with three 3D points P i whose
projections in the image are known, it is possible to com-
pute the pose of the camera. We chose Grunert’s method as
it is described in [5]. This method relies on trigonometri-
cal computations in the tetrahedron formed by the three 3D
points and the optical center of the camera. Relations are
computed between the distance of each of the 3D points to
the optical center and this leads to a 4th order polynomial
equation. There are at most 4 solutions for each sample of
3 points. The solution is chosen in the RANSAC process.

For the next image triplets, we use a different method for
computing camera motion. Assume we know the location
of cameras C1 through CN , we can compute camera CN+1

by using the location of cameras CN−1 and CN and point
correspondences over the image triplet (N − 1, N,N + 1).
We match a set of points P i whose projections are known
in each image of the triplet. From the projections in images
N − 1 and N , we can compute the 3D coordinates of point
P i. Then from the set of P i and their projections in im-
age N + 1, we use a calibrated pose estimation algorithm
to compute the location of camera CN+1. In addition the

3D location of the reconstructed interest points are stored
as they will be the landmarks used for the localization pro-
cess. The pose estimation algorithm is based on Grunert’s
method and a RANSAC selection process. Random sam-
ples of three points are used to compute the pose of camera
CN+1. The advantage of a such an iterative pose estimation
process is that it can deal with virtually planar scenes. After
the pose computation, a second matching step is done with
the epipolar constraint based on the pose that had just been
computed. This second matching step allows to increase
the number of correctly reconstructed 3D points. This is
particularly important because we need as many points as
possible for the computation of the next camera. When do-
ing this there are 20 %more points correctly reconstructed.

2.4. Hierarchical bundle adjustment

The computation of camera motion previously presented
doesn’t give a very good solution. Moreover, the compu-
tation of camera CN depends on the results of the previ-
ous cameras and errors can build up over the sequence. In
order to correct this problem, we use a bundle adjustment
which provides a better solution. The bundle adjustment is
a Levenberg-Marquardt minimization of the cost function
f(C1

E , · · · , CN
E , P 1, · · · , PM ) where Ci

E are the external
parameters of camera i, and P j are the world coordinates
of point j. The cost function is the sum of the reprojection
errors of all the inlier reprojections in all the images :

f(C1
E , · · · , CN

E , P 1, · · · , PM ) =
N∑

i=1

M∑

j=1,j∈Ji

d2(pj
i ,KiP

j)

where d2(pj
i ,KiP

j) is the squared euclidian distance be-
tween KiP

j the projection of point P j by camera i, and pj
i

is the corresponding detected point. Ki is the 3 × 4 projec-
tion matrix built from the parameters values in Ci

E and the
known internal parameters of the camera. And Ji is the set
of points whose reprojection error in image i is less than 2
pixels at the beginning of the minimization. After a few it-
eration steps, Ji is computed again and more minimization
iterations are done. This inlier selection process is repeated
as long as the number of inliers increase.

It’s not a good idea to compute all the camera locations
and use the bundle adjustment only once on the whole se-
quence. In that case, increasing errors could produce an
initial solution too far from the optimal one for the bun-
dle adjustment to converge. Thus it is necessary to use the
bundle adjustment throughout the reconstruction of the se-
quence. Using an adjustment after each new frame is recon-
structed is possible but very time consuming, and impracti-
cal for large sequences. A faster solution as described in [7]
is to use the adjustment hierarchically. A large sequence
is divided into two parts with an overlap of two frames in



order to be able to merge the sequence. Each subsequence
is recursively divided in the same way until each final sub-
sequence contains only three images. Each image triplet is
processed as described above. For the first triplet we ob-
tain the geometry by computing an essential matrix. Each
remaining triplet has its first two frames in common with
the previous one. So the first two cameras of the triplet
are deduced from the previous triplet. The third camera is
computed using the pose estimation algorithm. After each
triplet has been computed we run a bundle adjustment over
its three frames.

In order to merge two sequences S1 and S2, we use the
last 2 cameras S1

N−1 and S1
N of S1 and the first 2 cameras

S2
1 and S2

2 of S2. As the images are the same, the cameras
associated after merging must be the same. So we apply a
rotation and a translation to S2 so that S1

N and S2
2 have the

same position and orientation. Then the scale factor is com-
puted so that d(S1

N−1, S
1
N ) = d(S2

1 , S2
2), where d(Si

n, Sj
m)

is the euclidian distance between the optical centers of the
cameras associated with Si

n and Sj
m. This doesn’t ensure

that S1
N−1 and S2

1 are the same, so a bundle adjustment is
used on the result of the merging operation. Merging is
done until the whole sequence has been reconstructed. The
reconstruction ends with a global bundle adjustment. The
number of points used in the bundle adjustment is on the
order of several thousands.

3. Real time localization

The output of the learning process is a 3D reconstruction
of the scene : we have the pose of the camera for each key
frame and a set of 3D points associated with their 2D posi-
tions in the key frames. At the start of the localization pro-
cess, we have no assumption on the vehicle localization. So
we need to compare the current image to every key frame to
find the best match. This is done by matching interest points
between the two images and computing a camera pose with
RANSAC. The pose obtained with the higher number of in-
liers is a good estimation of the camera pose for the first
image. This step requires a few seconds but is needed only
at the start. After this step, we always have an approximate
pose for the camera, so we only need to update the pose and
this can be done much faster.

Here we describe the update process in order to find the
current camera pose. The current image is noted Icur. First
we assume that the camera movement between two succes-
sive frames is small. So an approximate camera pose (we
note the associated camera matrix K0) for image Icur is the
same as the pose computed for the preceeding image. Based
on K0 we select the closest key frame Ikey in the sense
of shortest euclidian distance between the camera centers.
Ikey gives us a set of interest points IPkey reconstructed in
3D. We detect interest points in Icur and we match them

with IPkey. To do that, for each interest point in IPkey,
we compute a correlation score with all the interest points
detected in Icur which are in the search region. For each in-
terest point in IPkey we know a 3D position, so with K0 we
can compute an expected position of this point in Icur. In
the matching process the search region is centered around
the expected position and its size is small (20 pixels width
and 12 pixels heigth). After this matching is done, we have
a set of 2D points in image Icur matched with 2D points in
image Ikey which are themselves linked to a 3D point ob-
tained during the reconstruction process. Figure 2 shows the
interest points matched between a frame from the video and
the corresponding key frame. With these 3D/2D matches
a better pose is computed using Grunert’s method through
RANSAC for rejecting outliers. This gives us the camera
matrix K1 for Icur. Then the pose is refined using the iter-
ative method proposed by Araújo et al. [1] with a few mod-
ifications in order to deal with outliers. This algorithm is a
minimization of the reprojection error for all the points us-
ing Newton’s method. At each iteration we solve the linear
system Jδ = e in order to compute a vector of corrections δ
to be subtracted from the pose parameters. e is the error vec-
tor formed with the reprojection error of each point in x and
y. J is the Jacobian matrix of the error, Araújo gives a way
to compute J explicitly. In our implementation, the points
used in the minimization process are computed at each iter-
ation. We keep only the points whose reprojection error is
less than 2 pixels. As the pose converges towards the opti-
mal pose, some inliers can become outliers and conversely.
Usually, less than five iterations are enough.

4. Results

4.1. Checking our results

In order to evaluate the accuracy of both our reconstruc-
tion and our localization algorithm, we used a differential
GPS sensor to record the position of the vehicle. The GPS
data is used as the ground truth. Recording GPS signals
with a great accuracy is not possible everywhere. So we had
to find a place with not too many buildings so that enough
satellites were visible. This is an unfavourable case for our
algorithm because it was designed to work best in a dense
urban environment where a lot of visual features are avail-
able. So we made two kind of experiments. Some video
sequences where recorded along with the GPS data in a
place where the signals where available to have a compar-
ison with the ground truth. And a second set of sequences
were made in three different places (from a wide road to a
narrow street) to evaluate how much the accuracy of the lo-
calization changes from one place to the other. We could
also record longer sequences in these places. In city centers
we have been able to compute reconstructions for sequences



Figure 2. Matching interest points between a
video frame and the corresponding key frame
(only inliers are shown)

up to 500 meters long and 250 key frames. Such a recon-
struction appears on figure 9 with images extracted from the
video on figure 10.

4.2. Comparison with the ground truth

Comparing positions obtained by the GPS or with our vi-
sion algorithm is not completely straightforward. Two op-
erations are needed so that both data sets can be compared.
First the GPS sensor is not mounted on the vehicle at the
same place as the camera. The GPS is located at the mid-
point between the rear wheels of the car, while the camera
is between the front wheels. So the two sensors don’t have
the same trajectory. From the GPS positions, we computed
a ”virtual” GPS which indicates what a GPS would record if
it was at the same place as the camera. In addition, the 3D
reconstruction is done in an arbitrary euclidian coordinate
system, whereas the GPS positions are given in another co-
ordinate system. So the whole 3D reconstruction has to be

Figure 3. A few images from one of our video
sequences

transformed using a rotation, translation and scale change.
The approach described by Faugeras et al. [8] is used to
compute this transformation. After these transformations
have been made, for each camera we are able to compute
the error on the position in meters. For this, we assume that
the GPS data is exact. The GPS sensor we used is a Real
Time Kinematics Differential GPS (Thalès Sagitta model).
It is accurate to 1 cm in an horizontal plane. The accuracy
on a vertical axis is stated to be 2 cm but on our hardware
platform we could not have more than 20 cm accuracy. So
we discarded the vertical readings and all the localization
errors reported in this article are measured in an horizontal
plane only.

We recorded three video sequences on approximately the
same trajectory and we computed reconstructions on each
video sequence. Then to evaluate our reconstruction algo-
rithm, we used one of these sequences as the reference se-
quence in order to run the localization algorithm on the two
other ones. The length of the path for these sequences was
about 80m. You can see a few images on figure 3. Figure 4
shows the reconstruction obtained from video1 as seen from
above. The black squares are the position of the key frames,
while the 3D points appear as dots. Some pedestrians were
passing by, but this did not perturb the algorithms.

After building the 3D reconstruction from the key frames
with the structure from motion algorithm, we used the local-
ization algorithm to get the pose of each camera in the se-
quence (not only key frames). Then we computed the mean
error for every frame. The results are given in table 1 as
well as the number of key frames and the number of points
in each sequence. Figure 5 shows the positions computed
for each key frame (little circles), with reference to the tra-
jectory recorded by the DGPS (solid line).



Figure 4. Top view of a 3D reconstruction

Sequence mean error number of number of
key frames 3D points

video1 15 cm 143 15149
video2 18 cm 174 17025
video3 13 cm 191 17772

Table 1. Mean reconstruction error and num-
ber of frames and points for a 80m long path

We computed a localization for each frame of videoi us-
ing videoj as the reference sequence for each i and j such
that i �= j. Then we measured the distance between the po-
sition obtained by this algorithm and the position measured
by the GPS for each camera. The mean error over all the
frames of each sequence was then computed. So we made
6 localization experiments. The mean error was between
12 cm and 17 cm depending on the video sequence. Com-
puting an average value for all the 6 experiments gave 15
cm. An example of the localization error for each frame in
the sequence is displayed on figure 7. The corresponding
trajectories are displayed on the same graph on figure 6.

4.3. Localization accuracy in different environ-
ments

In places where recording GPS signals is not possible,
we used another way to check our results. We recorded
two video sequences simultaneously with two cameras. The
cameras where rigidly fixed on a car, one on the right side
and the other on the left side. The left sequence is used as
the reference trajectory. The other one is the sequence to be
localized. With this setup, the localization algorithm should
indicate a constant distance between the current localization
of the robot and the reference trajectory.

We selected three places for these experiments : a wide
road (sequence named ”Wide”), a road with a wall on one

Figure 5. Position of the key frames with refer-
ence to the trajectory recorded by the DGPS
(units in meters). Whole trajectory (top) and
close up view (bottom)

side (called ”Intermediate”) and a narrow street with walls
on both sides (called ”Narrow”). One image extracted from
each of the three video sequences are shown on figure 8.

For each of the three experiments, we built a 3D recon-
struction using the left sequence. We used this reconstruc-
tion as the reference in order to localize the right camera.
We also computed the pose of each camera (not only key
frames) in the right sequence by using our localization al-
gorithm on the right sequence also. Then for each frame,
we computed the euclidian distance between the right and
the left camera centers. This distance should be constant,
so the error we made in the localization process is given by
the standard deviation of this distance. For these three ex-
periments, the standard deviation was 50 cm for the ”Wide”
sequence, 25 cm for the ”Intermediate” sequence and 5 cm
for the ”Narrow” sequence. These results are not directly
comparable to those presented in section 4.2 because they
don’t integrate the drift that can happen in the reconstruc-
tion. Nevertheless these experiments suggest that the ac-
curacy is greatly increased if more buildings are near the



Figure 6. Trajectory recorded by the DGPS
(broad line) and the trajectory computed with
the localization algorithm (thin line)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200 1400

Lo
ca

liz
at

io
n 

er
ro

r 
(m

et
er

s)

Frame number

Figure 7. Localization error for each frame

camera. That’s exactly the kind of environment where the
accuracy of the GPS decreases considerably, so the two lo-
calization approaches are complementary and should work
well in data fusionning.

4.4. Computation times and memory usage

All the timings were made on a 2.4GHz Pentium 4 pro-
cessor with 320x240 images and 1500 interest points de-
tected in each frame. Map building with about 150 key
frames takes about one hour. The localization process runs
at the video frame rate (30 Hz). Detecting interest points
takes 13 ms, matching requires 10 ms, Computing the pose
with RANSAC and the iterative algorithm takes 10 ms. The
Memory space needed to store the database for the large se-
quence shown on figure 9 is approximately 26 Mb. So we
can expect to store 20 m per megabyte of memory without
data compression. Of course it depends on the sequence as

Figure 8. The three video sequences : Wide,
Intermediate, Narrow

more key frames are needed where the road turns. Fortu-
nately, only a small part of the database needs to be loaded
into memory at a given moment.

5. Conclusion

We have shown a method for self localization along a
path. After a human guided experience, we compute a map
of the environment in an off line learning step. With this
map, the robot is able to compute its pose. The accuracy of
our algorithm was measured using a DGPS as the ground
truth. The mean localization error is about 15 cm in the
unfavourable case of an open area where the GPS is avail-
able. Other experiments suggest that the accuracy should
be increased when working in a narrow urban canyon even
if we can’t measure it with the DGPS. This algorithm will
be used for autonomous navigation soon. The accuracy is
not as good as a DGPS sensor, but our vision system has
several advantages over the GPS. First it is able to provide
the orientation even if the vehicle doesn’t move. The price
is greatly reduced as only a camera and a laptop computer
are required. And more important, our algorithm is bet-
ter suited to narrow streets and city centers where GPS sig-
nals are not available. The localization algorithm runs at the
video frame rate (30 Hz). We plan to integrate a better mo-
tion model in order to have a better initial estimation of the
camera pose. This should reduce the time used for matching
and RANSAC.

References

[1] H. Araújo, R.J. Carceroni, and C.M. Brown, “A fully
projective formulation to improve the accuracy of



Figure 9. 3D reconstruction of a large se-
quence (500m long). Overview of the recon-
struction on the left and a more detailed part
on the right

Lowe’s pose estimation algorithm”, Computer Vision
and Image Understanding, 70(2):227-238, 1998.

[2] P. Beardsley, P. Torr and A. Zisserman, “3D Model ac-
quisition from extended image sequences”, European
Conference on Computer Vision, pp 683-695, April
1996.

[3] A. Davison, “Real-time simultaneaous localisation and
mapping with a single camera”, International Con-
ference on Computer Vision ICCV’03, pp 1403-1410,
2003.

[4] M. Fischler and R. Bolles, “Random Sample Consen-
sus: a Paradigm for Model Fitting with Application
to Image Analysis and Automated Cartography”, Com-
mun. Assoc. Comp. Mach.,24:381-395, 1981.

[5] R. Haralick, C. Lee, K. Ottenberg, M. Nolle, “Review
and analysis of solutions of the three point perspec-
tive pose estimation problem”, International Journal of
Computer Vision, 1994.

[6] C. Harris, M. Stephens, “A Combined Corner and Edge
Detector”, Alvey Vision Conference, pp 147-151, 1988.

[7] R. Hartley, A. Zisserman, Multiple view geometry in
computer vision, Cambridge University Press, 2000.

Figure 10. A few images from a large se-
quence recorded in an urban area

[8] O. Faugeras and M. Hebert, “The representation, recog-
nition, and locating of 3-d objects”, International Jour-
nal of Robotic Research, MIT Press, vol. 5, No. 3, pp
27-52, 1986.

[9] S. Jeon, B. Kim, “Monocular-based Position Determi-
nation for Indoor Navigation of Mobile Robots”, In
Proc. of the 1999 IASTED international conference,
1999.

[10] K. Kidono, J. Miura, Y. Shirai, “Autonomous Visual
Navigation of a Mobile Robot Using a Human-Guided
Experience”, Robotics and Autonomous Systems, Vol.
40, Nos. 2-3, pp 124-1332, 2002.

[11] Y. Matsumoto, M. Inaba, H. Inoue, “Visual Naviga-
tion using View-Sequenced Route Representation”, In
Proceedings of IEEE Conference on robotics and Au-
tomation, pp. 83-88, 1996.

[12] D. Nistér, “An efficient solution to the five-point rela-
tive pose problem”, 2003 Conference on Computer Vi-
sion and Pattern Recognition, volume II, June 2003.

[13] D. Nistér,O. Naroditsky, J. Bergen, “Visual odome-
try”, 2004 Conference on Computer Vision and Pattern
Recognition, Vol. 1, pp 652-659, 2004.

[14] M. Pollefeys, R. Koch and L. Van Gool, “Self-
Calibration and metric reconstruction in spite of vary-
ing and unknown internal camera parameters”, Interna-
tional Conference on Computer Vision, pp 90-95, 1998.

[15] A. Remazeilles, F. Chaumette, P. Gros, “Robot motion
control from a visual memory”, In IEEE Int. Conf. on
Robotics and Automation, ICRA’04, Vol. 4, pp 4695-
4700, April 2004


