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Abstract. This paper proposes a quasi-dense reconstruction from un-
calibrated sequence. The main innovation is that all geometry is com-
puted based on re-sampled quasi-dense correspondences rather than the
standard sparse points of interest. It not only produces more accurate
and robust reconstruction due to highly redundant and well spread input
data, but also fills the gap of insufficiency of sparse reconstruction for
visualization application. The computational engine is the quasi-dense
2-view and the quasi-dense 3-view algorithms developed in this paper.
Experiments on real sequences demonstrate the superior performance of
quasi-dense w.r.t. sparse reconstruction both in accuracy and robustness.

1 Introduction

3D reconstruction from uncalibrated sequences has been very active and suc-
cessful in the past decade in computer vision. This is mainly due to the intrinsic
formulation of geometric constraints in projective geometry and a better under-
standing of numerical and statistical properties of geometric estimation [T9/42].
Many reconstruction algorithms based on point features have been published
for short [BI3IT6l6] or long sequences [38I36]. Almost all of these approaches
have been based on sparse points of interests. More recent and complete systems
based on these ideas are reported in [28]9)3T1)2T] without any prior camera cali-
bration or position information. Unfortunately, most modeling and visualization
applications need dense or quasi-dense reconstructions rather than a sparse point
clouds. Traditional dense stereo methods are limited to specific pre-calibrated
camera geometries and closely spaced viewpoints [B7/29]18/[17]. Traditional dense
stereo/motion analysis is not yet efficient and robust enough to be integrated into
an on-line dense reconstruction to handle images captured by hand-held cameras.
It should be noted that although the final results reported in [30] showed densely
textured models, the method only applied the dense stereo reconstruction using
an area-based algorithm after obtaining the geometry by a sparse method.

We propose to develop an intermediate approach to fill the gap between
sparse and dense reconstruction methods for hand-held cameras. By quasi-dense
reconstruction we mean that the geometry is directly computed on re-sampled
points from quasi-dense pixel correspondences, rather than reconstructions of
sparse points of interest. Quasi-dense correspondences are preferable to fully
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dense ones owing to their greater robustness and efficiency with hand-held cap-
tured images. The most innovative part is that all geometry is computed with a
simple and efficient quasi-dense correspondence algorithm proposed in [22[23/24]
for image-based rendering applications. Quasi-dense correspondence has been
integrated at the earliest stage from the building blocs of 2-view geometry and
3-view geometry up to the final sub-sequence merging. This not only gives ob-
ject/scene reconstructions more suitable for visualization application, but also
results in more accurate and robust estimation of camera and structure.

2 Review of Quasi-Dense Matching

The construction of quasi-dense matching map starts from matching some points
of interest that have the highest “textureness” as seed points. This bootstraps
a region growing algorithm to propagate the matches in its neighborhood from
the most textured (therefore most reliable) pixels to less textured ones .

The algorithm can therefore be described in two steps: Seed selection and
Propagation, which are illustrated in Figure [[

Fig. 1. Top: initial seed matches for two consecutive images of the Garden-cage se-
quence with big disparities (some seeds are bad mainly due to the shutter periodic
textures). Bottom: the resulting propagation without the epipolar constraint.

Points of interest [25l[12] are naturally good seed point candidates, as points
of interest are by its very definition image points which have the highest tex-
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tureness, i.e. the local maxima of the auto-correlation function of the signal. We
first extract points of interest from two original images, then a ZNCC correla-
tion method is used to match the points of interest across two images, followed
by a cross validation for the pair of images. This gives the initial list of seed
correspondences sorted by the correlation score.

At each step of the propagation, the match (x,x’) composed of two corre-
sponding pixels x, x” with the best ZNCC score is removed from the current list
of seed matches. The ZNCC is still used as it is more conservative than others
such as sum of absolute or square differences in uniform regions, and is more
tolerant in textured areas where noise might be important. Then we look for
new potential matches (u,u’) in their immediate spatial neighborhood N (x, x’).
This neighborhood enforces a disparity gradient limit of 1 pixel in both image
dimensions ||(u' — u) — (x’ — x)||oc < 1 to deal with inaccurate or non available
epipolar constraint. The matching uniqueness and the ending of the process are
guaranteed by choosing only new matches (u, u’) that have not yet been selected.

The time complexity of this propagation algorithm is O(nlog(n)), only de-
pendent of the number of final matches n, and the space complexity is linear
in the image size. Both complexities are independent of disparity bound. Notice
that at each time only the best match is selected, this drastically limits the possi-
bility of bad matches. For instance, the seed selection step seems very similar to
many existing methods [43/39] for matching points of interest using correlation,
but the crucial difference is that we need only to take the most reliable ones
rather than trying to match a maximum of them. In some extreme cases, only
one good seed match is sufficient to provoke an avalanche of the whole textured
images. This makes our algorithm much less vulnerable to bad seeds. The same
is true for propagation, the risk of bad propagation is considerably diminished
by the best first strategy over all matched boundary points.

Fig. 2. The re-sampled matches from the propagation (described in Section [) is rep-
resented as a set of matched black crosses in both images. These well spread matches
are used to fit the fundamental matrix, shown as white epipolar lines.
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3 Re-sampling

The matching map obtained from the propagation may still be corrupted and
irregular. We assume that the scene surface is locally smooth enough to be ap-
proximated by small planar patches. Thus, the matching map can be regularized
by locally fitting planar patches encoded by homographies. The first image is
initially subdivided into small regular grid. For each square patch, we obtain all
matched points of the square from the quasi-dense matching map. A plane ho-
mography should be tentatively fitted to these matched points of the square to
look for potential planar patches. The RANdom SAmple Consensus (RANSAC)
method [7] is used for robust estimation. In practice, the stability of the homog-
raphy fitting decreases with the patch size. Our compromise between patch grid
resolution and stability fitting is to fit a planar affine application (which counts
only 6 d.o.f instead of 8 d.o.f of homography) in 8 x 8-pixel squares.

The result is a list of matches shown by crosses in Figure 2 which is better
spread in image space than the usual list of matched interest points shown at
the top of Figure[l.

4 Estimating 2-View Geometry

The 2-view geometry of a rigid scene is entirely encoded by the fundamental
matrix. The actual standard approach is to compute automatically fundamen-
tal matrix and correspondences from sparse points of interest [43J39] within a
random sampling framework. There are also attempts of integrating the dense
correspondence into the non-linear optimization of the fundamental matrix start-
ing from an initial sparse solution by optimizing a global correlation score [11],
but the algorithm is very slow in computation time (7-12 minutes vs. 20-40
seconds for the method to be proposed here for images of size 512 x 512 and
similar processors) and fragile to handle occlusion for widely separated images
as those in the image pair shown in Figure 2l In the context of our quasi-dense
matching algorithm, we have two choices of integrating the geometry estimation
into the match propagation algorithm for quasi-dense matching. The first is an
epipolar constrained propagation which grows only those satisfying the epipolar
constraint, while the second is an unconstrained one. The advantage of con-
strained propagation is that the bad propagation might be stopped earlier, but
the domain of propagation might be reduced. Even more seriously, the geometry
estimated with a robust method often tends to be locally fitted to a subset of
images. We therefore prefer a strategy of an unconstrained propagation followed
by a more robust constrained propagation as follows:

1. Detect points of interest in two images and compute the first correspondences
by correlation and bidirectional consistency [10].

2. Run an unconstrained propagation.

3. Re-sample the obtained quasi-dense correspondences using a regular sam-
pling grid in one image, and deduce the corresponding re-sampled points in
the other image using the estimated local homographies.
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4. Match the detected points of interest using the estimated local homographies,
and add these matches in the list of re-sampled quasi-dense correspondences.

5. Estimate the fundamental matrix F using a standard robust algorithm [39]
43IT5] on re-sampled quasi-dense correspondences.

6. Run an epipolar constrained propagation by F.

7. Again re-sample the quasi-dense matches from the constrained propagation
and again add matched points of interest.

8. Re-estimate the fundamental matrix F using the re-sampled quasi-dense
correspondences.

5 Estimating 3-View Geometry

The 3-view geometry plays a central role for construction of longer sequences as
3 views is the maximum number of images which can be solved in closed-form,
but also it is the minimum number of images which has sufficient geometric
constraints to remove match ambiguity. The projective reconstruction from a
minimum of 6 points in 3 views is therefore the basic computational engine for
3-view geometry both for robust assessment of correspondences using RANSAC
and for optimal bundle adjustment of the final solution [33J34/40/T535].
The quasi-dense 3-view algorithm can be summarized as follows.

1. Apply the previous quasi-dense 2-view algorithm to the pair s and i — 1 and
the pair 7 and 7 + 1.

2. Merge the two re-sampled quasi-dense correspondences between the pair
i — 1 and i and the pair 7 and 7 + 1 via the common ith frame as the set
intersection to obtain an initial re-sampled quasi-dense correspondences of
the image triplet.

3. Randomly draw 6 points to run RANSAC to remove match outliers using
re-projection errors of points. For 6 randomly selected points, compute the
canonical projective structure of theses points and the camera matrices using
the closed-form 6-point algorithm [33].

The other image points are reconstructed using the current camera matrices
and re-projected back onto images to evaluate their consistency with the
actual estimate.

4. Bundle adjust 3-view geometry with all inliers of triplet correspondences by
minimizing the re-projection errors of all image points by fixing one of the
initial camera matrices.

The general philosophy of exploiting strong 3-view geometry for long se-
quence reconstruction is the same as the previous methods [92T40], but it differs
from [9] in the following aspects:

— We do not transfer point pairs for guided matching. The 3-view geometry
only assesses inliers and outliers from the common re-sampled quasi-dense
correspondences, it is therefore fast as the percentage of outliers is small.
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— We do not use trifocal tensor parametrization of 3-view geometry as sug-

gested in [9[IT5IB5]. We use the P-matrix representation directly from the
canonical projective structure of 6 points to reconstruct other points and
evaluate their re-projection errors for assessing inliers/outliers of correspon-
dences by RANSAC.
Tensor parametrization is hardly justified here as it gives a rather compli-
cated over-parametrization of the 3-view geometry, more sophisticated nu-
merical algorithms are necessary for its estimation. The transfer error tends
to accept points which are large outliers to the re-projection error from the
optimal estimate [9J§]. Tensor might be useful for guided matching [8], but
is unnecessary in our case.

— We use the closed-form 6-point algorithm [33] rather than more recent meth-
ods proposed in A0IT534] as the initial solution for robust search and opti-
mization. It is direct and fast without any SVD computation compared with
the algorithm [I5] that we have also implemented and tested. The improve-
ment provided by Schaffalitzky et al. [34] is necessary only when redundant
data has to be handled.

6 Merging Pairs and Triplets into Sequences

From pairs and triplets to sequences, we essentially adapt the hierarchical merg-
ing strategy successfully used in [9J21] which is more efficient than an incremental
merging strategy.

The general hierarchical N-view algorithm can be summarized as:

1. For each pair of consecutive images in the sequence, apply the quasi-dense
2-view algorithm described in Section
2. For each triplet of consecutive images in the sequence, apply the quasi-dense
3-view algorithm described in Section Bl
3. Apply a hierarchical merging algorithm of sub-sequences. A longer sequence
[i..7] is obtained by merging two shorter sequences [i..k 4+ 1] and [k..j] with
two overlapping frames k and k41, where k is the median of the index range
[i..5]. The merge consists of
a) Merging the two re-sampled quasi-dense correspondences between two
sub-sequences using the 2 overlapping images.
b) Estimating the space homography between two common cameras using
linear least squares.
c) Apply the space homography for all camera matrices and all points not
common in the two sub-sequences.
d) Bundle adjust the sequence [i..j] with all merged corresponding points.

In [9], several algorithms have been proposed to merge two triplets with 0, 1
or 2 overlapping views. The main advantage of imposing two-view overlapping is
that camera matrices are sufficient for estimating the space homography to merge
two reconstructions without any additional point correspondences between the
two. It is also important to notice that both re-sampled quasi-dense points from
3-view geometry and sparse points of interest are contributing to the merging
and optimization steps.



Quasi-Dense Reconstruction from Image Sequence 131
7 Optimal Euclidian Estimation of Reconstruction

The final step is to upgrade the projective reconstruction into a metric represen-
tation using self-calibration and optimal estimates of the metric representation.

— A linear solution [30] based on the parametrization of the dual of the absolute
conic [471] is used for estimating constant but unknown focal lengths while
assuming the other intrinsic camera parameters, such as principal point and
aspect ration, are given. If the algorithm fails, we simply perform a one-
dimensional exhaustive search of the focal lengths from a table of possible
values.

— Transform the projective reconstruction by the estimated camera parameters
to its metric representation. The metric reconstruction coordinate system is
those of the camera in the middle of the entire sequence and the scale unit
is the maximum distance between any pairs of camera positions.

— Re-parametrize each Euclidian camera by its 6 individual extrinsic param-
eters and one common intrinsic focal length. This natural parametrization
allows us to treat all cameras equally when estimating uncertainties, but
leaves the 7 d.o.f scaled Euclidian transformation gauge freedom [42]273].
Finally, apply an Euclidian bundle adjustment over all cameras and all quasi-
dense points.

— A second Euclidian bundle adjustment by adding one radial distortion pa-
rameter for all cameras is carried out in the case where the non-linear dis-
tortions of cameras are non-negligibles, for instance, for image sequences
captured by a very short focal length.

It is obvious that the sparse structure of the underlying numerical system as
suggested in photogrammetry [2]26] and vision [14]42]15] has to be exploited for
the implementations of both projective and Euclidian bundle adjustments as we
are routinely handling at least 10 thousand 3D points. It is also natural to use
reduced camera subsystem by eliminating the structure parameters.

8 Comparative Experiments

This section demonstrates the accuracy and robustness of the quasi-dense re-
construction method (QUASI) by comparing it with the standard sparse meth-
ods (SPARSE). We will use two sparse reconstruction algorithms based only
on points of interest. The first consists of simply tracking all points of inter-
est detected in each individual image. The second is a mixture of sparse and
quasi-dense: it consists of assessing points of interest from individual images by
geometry that is computed from quasi-dense algorithm, and to re-evaluate the
complete geometry only from these matched interest points. In the following, it
is meant by “SPARSE” the best result of these two methods.

To measure the reconstruction accuracy, we may consider the bundle adjust-
ment as the maximum likelihood estimates of both camera and scene structure
geometry, if we admit that the image points are normally distributed around
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their true locations with an unknown standard deviation o. This assumption is
reasonable both from theoretical and practical point of view [20]. The confidence
regions for a given probability can therefore be computed from the covariance
matrix of the estimated parameters.

The covariance matrix is only defined up to the choice of gauge [42/273]
and the common unknown noise level o2. The noise level o2 is estimated from
the residual error as 02 = r2/(2e — d) where 72 is the sum of the e squared re-
projection errors, d is the number of independent parameters of the minimization
d=1+6¢+3p—7 (1 counts for the common focal length, ¢ is the number of
cameras, p is the number of reconstructed points and 7 is the gauge freedom
choice). All results given here are gauge free: the covariance is computed without
imposing gauge constraints, now in the coordinate system of the camera in the
middle of the sequence and with the scale unit equal to the maximum distance
between camera centers. We obtain the same conclusions for the comparisons
between SPARSE and QUASI with a camera-centered gauge by fixing orientation
and position of the middle camera (especially, the uncertainty oy is the same
for all gauge choices since f is gauge invariant). Since the full covariance matrix
is very big, only its diagonal blocs for cameras and points are computed using
sparse pseudo-inversion method [3I5].

vimea o o)

Fig. 3. A synthetic scene composed of two spline surfaces and a very distant plane
with three textures mapped on it: random textured scene (left), indoor textured scene
(middle) and outdoor textured scene (right).

We choose a 90% confidence ellipsoid for any 3D position vector: if Cis a 3x3
covariance sub-matrix of any camera position or point extracted from the full
covariance matrix of all parameters, the confidence ellipsoid is therefore defined
by AxTC™'Ax < 6.25, i.e. a 90% probability for a chi-square distribution with
3 degrees of freedom [32]. The maximum of semi-axes of 90% confidence ellipsoid
is computed as the uncertainty bound for each 3D position. As the number of
cameras is moderate, we only use the mean of all uncertainty bounds of camera
positions X., to characterize the camera uncertainty. The number of points is
however quite consequent, particularly for the QUASI method. To have a better
characterization of their uncertainties, we compute the rank 0 (the smallest
uncertainty bound xq), rank § (x 1 ), rank % (median x%)7 rank 2 (x 3 ) and rank
1 (the largest uncertainty bound x;) of the sorted uncertainty bounds to assess
the uncertainty of the reconstructed points. The uncertainty of the focal length
f is given by the standard deviation o.
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8.1 Synthetic Examples

First we experiment on a synthetic scene with two spline surfaces and a very
distant plane with three textures and uneven spread of points of interest: a well
textured random scene, a low textured indoor scene and an outdoor scene of low
texture, as illustrated in Figure[3. The camera moves around a vertical axis at
the middle of the scene by 5 degrees 5 times, and the image size is 256 x 256.

Table 1. Uncertainty measures for the synthetic scene. The right column are the
accuracy of camera centers w.r.t ground truth

Random |#3D points| o | f || X¢; | %o X1 |X1 | X3 X1 [1xc, ]
QUASI 2559 .25]256||8.8e-4|.011|.031{.056| .96 |1.6|(9.5e-4
SPARSE 126 .45|2561|6.0e-3(.065| .11 | .15 | .19 |4.7||3.1e-3

Indoor |#3D points| o | f || X¢;, | %o X1 |X1 | X3 |x1 [|xe; ]
QUASI 1459 .36(256||1.8e-3|.022|.046{.076|0.14|5.0||1.6e-3
SPARSE 114 .42]256||4.8e-3|.055|0.61{0.69|0.11|1.6||3.8e-3

Outdoor |#3D points| o | f || X¢; | %o X1 |X1|X3 X1 [1xc, ]
QUASI 1547 .34/256||1.6e-3|.019|.041{.071|0.11|2.9||2.0e-3
SPARSE 66 .461256||7.3e-3|.070|0.93]0.15|0.21|3.0{|6.8e-3

The computed uncertainty measures are shown in Table [l With 10 to 20
times more points, the QUASI uncertainties are usually 2 to 5 times smaller.
As expected, the points on the textured and distant plane are very uncertain
in comparison with the others. In this particular case of synthetic scene, all in-
trinsic parameters (including the known focal length f) are enforced by the final
Euclidian bundle adjustment. Furthermore, the true camera motion is known:
we compute the accuracy of the movement ||x.,|| as the mean of the Euclidian
distance between the estimated and the true centers of cameras. The QUASI
accuracy is usually 3 times better than the SPARSE one. These conclusions are
the same if the focal length f is estimated in the final Euclidian bundle, with a
better f accuracy for QUASI.

We have also experimented with other synthetic examples where the set of
matched interest points is well spread in image space, and have found in these
last cases that the accuracies are usually better for SPARSE than for QUASI,
although uncertainties are usually better for QUASI than for SPARSE.

8.2 Real Examples

We also give detailed experimental results on three real sequences. The Corridor
sequence (11 images at resolution 512 x 512) has a forward motion along the
scene which does not provide strong geometry, but favors the SPARSE method
as it is a low textured polyhedric scene, points of interest are abundant and well
spread over the scene. The Lady sequence (20 images at 768 x 512) has a more
favorable lateral motion in close-range. The Garden-cage sequence (34 images
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Fig. 4. From left to right: Corridor (11 images at 512x 512 resolution), Lady (20 images
at 768 x 512), Garden-cage (34 images at 640 x 512) sequences.

at 640 x 512) are captured by a hand-held still camera (Olympus C2500L) with
an irregular but complete inward walk around the object.

Table 2. Uncertainty measures for the Corridor sequence: the mean of the uncertainty
bounds of camera centers and the rank-k of the sorted uncertainty bounds of points.

Corridor|#3D points| o | f | o5 || Xe;

4 4
QUASI 16976  |0.41|714|4.36}|7.0e-4|.014|.070/.13|.38|15700
SPARSE 427 0.52|761|17.3||1.7e-3|.016|.056|.12|.32| 106

X0 | X1 [X1|X3 X1

Corridor. TableRlshows the comparative uncertainty measures for the Corridor
sequence. With almost 40 times redundancy, camera position (resp. focal length)
uncertainties from QUASI are two times (resp. four times) smaller than those
from SPARSE. However, the point uncertainties for SPARSE are slightly better
than those of QUASI for the majority of points. As the camera direction and
path is almost aligned with the scene points, the points on the far background of
the corridor are almost at infinity. Not surprisingly with the actual fixing rules
of the coordinate choice, they have extremely high uncertainty bound along the
camera direction for both methods. Figure B shows the reconstruction results
in which each 3D points is displayed as a small texture square around it, and
illustrates a plane view of the 90% confidence ellipsoids.

Lady. For the Lady sequence, we show the results obtained from SPARSE and
QUASI methods in Table B and Figure il The uncertainties for QUASI are
smaller than for SPARSE, 6 times smaller for focal length and camera positions.
We have noticed that the very small number of 3D points makes the SPARSE
method fragile.

Garden-cage. The Garden-cage sequence is particularly difficult as it is con-
sisting of a close-up bird cage and background houses and trees. The viewing
field is therefore very profound. SPARSE methods failed because some triplets of
consecutive images do not have sufficient matched interest points. The QUASI
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Fig. 5. QUASI (left) and SPARSE (right) reconstructions for Corridor and their 90%
confidence ellipsoids viewed on a horizontal plane. Only 1 out of 10 ellipsoids for QUASI
is displayed.

Fig. 6. QUASI (left) and SPARSE (right) reconstruction of the Lady sequence. The
90% ellipsoids for final Euclidian bundle adjustment are enlarged 4 times on the top.
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Table 3. Uncertainties for the Lady sequence.

Lady |#3D points| o | f | oy || X,

4 2 4
QUASI 26823  |.53|849|2.26||6.1e-4|1.2e-3|4.2e-3|5.4e-3|6.1e-3|1.9e-2
SPARSE 383 .541866(13.6|3.8e-3|5.2e-3|9.8e-3|1.1e-2|1.3e-2|2.6e-2

X0 X1 X1 X3 X1

method gives the uncertainties in Table Bland 90% ellipsoids in Figure [{l As the
images have been captured with the smallest focal length available, the camera
non-linear distortion is becoming not negligible. After a first round of Euclid-
ian bundle adjustment, a second adjustment by adding one radial distortion
parameter p for all cameras is carried out.

Let ug, x and u be respectively the image center, undistorted and distorted
points for an image, the first order radial distortion parameter p is defined as:

w= g + (1 + p(r/200)2)(x — o),

where r = /||x — up||2 and (ug,v0) " = uo.

We have estimated p = —0.086 with our method. This estimate is similar to
that obtained with a very different method proposed in H] for the same camera
but different images: p = —0.084.

Computation times in minutes for the QUASI method are given in Table Bl
for all sequences using a Pentium IIT 500 Mhz processor.

8.3 Robustness

The robustness of the methods can be measured by the success rate of recon-
struction for a given sequence. The QUASI method is clearly more robust for all
sequences we have tested: whenever a sequence is successful for SPARSE, it is
equally for QUASI, while SPARSE fails for many other sequences (not shown in
this paper) including the Garden-cage sequence in which QUASI succeeds. Fur-
thermore in all our test, the SPARSE method was defined at the very beginning
of this Section as the best result between a pure sparse and a mixed sparse-quasi
methods, where the mixed one is sometimes the only one which succeed.

Table 4. Uncertainties for the Garden-cage sequence.

Garden-cage|#3D points| o | f | oy P op Xe; X0 X1 X1 | X

= fale

4 2
QUASI 50161 .46(732]0.27]-0.086|1.1e-4||3.8e-4|5.2e-4|1.9e-2|4.4e-2]0.

9 Conclusion

In this paper, we have proposed a general quasi-dense 3D reconstruction from
uncalibrated sequences. The main innovative idea is that all geometry is com-
puted based on re-sampled quasi-dense correspondences rather than only stan-
dard sparse points of interest. Experiments demonstrate its superior performance
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Fig. 7. Top view of the 90% confidence ellipsoids and 3 re-projected views of QUASI
reconstruction. The small square shaped connected component at the center is the
reconstructed bird cage while the visible crosses forming a circle are camera positions.

Table 5. Computation times (min.) for the QUASI method with a PIII 500 Mhz.

[#cameras|#3D points|/matching and 2-views|3-views and merge|

Corridor 11 16976 6 11
Lady 20 26823 13 16
Garden-cage 34 50161 25 27
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both in accuracy and robustness due to highly redundant and well spread input
data. Quasi-dense reconstruction has also more visualization related application
than sparse reconstruction. Future research directions include time reduction for
longer sequences by intelligent decimation of reconstructed points in the hier-
archical bundle, and all rendering related topics such as meshing and texture
merging for a full 3D surface models.
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