
TOWARD TEXTURING FOR IMMERSIVE MODELING OF ENVIRONMENT
RECONSTRUCTED FROM 360 MULTI-CAMERA

Maxime Lhuillier

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont Ferrand, France

ABSTRACT
The computation of a textured 3D model of a scene using a
camera has three steps: acquisition, reconstruction and tex-
turing. The texturing is important for visualization appli-
cations since it removes visual artifacts due to inaccuracies
of the reconstruction, varying photometric parameters of the
camera and non-Lambertian scene. This paper presents the
first texturing pipeline for an unfrequent but important case:
the reconstruction of immersive 3D models of complete en-
vironments from images taken by a 360 multi-camera mov-
ing on the ground. We contribute in many ways: sky textur-
ing (not done in previous work), estimation of gain and bias
corrections, and seam leveling. All methods are designed to
deal with ordered sequences of thousands of keyframes. In
the experiments, we start from videos taken by biking during
25 minutes in a campus using a helmet-held Garmin Virb 360.

Index Terms— 3D model texturing, 360 camera.

1. INTRODUCTION

The texturing is not a trivial task since it has to deal with
several problems. First the reconstruction estimates geomet-
ric parameters of the camera and a triangulated surface of the
scene with inaccuracies. Second photometric parameters of
the camera vary during the acquisition. Third the scene is
non-Lambertian. Thus a part of the scene can have differ-
ent colors in different images taken by the camera. In this
context, the texturing cannot be reduced to simple copies of
texture segments from the input images to a texture atlas.

This paper is the first to focus on the texturing in an un-
frequent case: an immersive model of an environment recon-
structed by moving a 360 multi-camera. This has important
applications like content creation for VR. Compared to previ-
ous approaches, we fully exploit two assumptions: the camera
is a consumer grade 360 multi-camera and the set of available
keyframes (KF) is ordered and computed by Structure-from-
Motion (SfM) from the input videos. First Section 2 summa-
rizes and discusses previous work. Then Section 3 describes
our overall method and Sections 4 and 5 provide details on
two steps. Last we experiment in Section 6 (including com-
parisons with [16]) and conclude in Section 7.

Thanks to CNRS and Institut Pascal for funding.

2. PREVIOUS WORK

2.1. Gain and bias corrections

Even a Lambertian scene can have different colors in different
images taken by a moving camera if its parameters change.
This generates visual artifacts like color discontinuities in ap-
plications. A method [3] reduces the visual artifacts of im-
age stitching by estimating, for each image, a luminance gain
to minimize a sum of luminance discrepancies over pairs of
matched pixels. Another method [14] reduces the visual ar-
tifacts of 3D model texturing by estimating, for each image,
a 1D affine transform (i.e. both gain and bias) to minimize a
sum of discrepancies of color histograms over selected image
pairs. Histogram is computed in projection of the scene part
seen by both images. Histogram discrepancies are more ro-
bust to reconstruction inaccuracies than color discrepancies.

Our gain-bias estimation has differences with [14]. First
we improve the efficiency using a discrepancy of 1D affine
transforms estimated from histograms instead of a discrep-
ancy of histograms. Then we solve a linear least-square prob-
lem instead of a non-linear one.

2.2. Sky segmentation

The previous texturing methods implicitly assume that the in-
put triangulated surface does not have triangles in the sky.
Then important visual artifacts occur in sky rendering. Since
we need a sky texturing in our immersive context and since
the texturing process is different for sky and not-sky regions
(at least because the reconstruction is not reliable in the sky),
we propose to segment the sky in all KFs. Then we greatly
reduce these artifacts.

Sky segmentation in the general case is difficult [10]. Here
we take advantage of a prior sky segmentation induced by
the input surface, which does not have sky triangle (e.g. [5])
or has triangles that are classified sky or not-sky [7]. We
use a method based on a maximum a posteriori estimation
and obtain a decent sky segmentation for texturing. Alterna-
tive methods are possible by following the current trend of
deep learning. However such methods have drawbacks: the
increase of complexity, the choice of a training dataset, and
time consistency assumptions (single image [12] or video [6]
queries) which are not ours (a series of KFs).

2.3. Texture atlas

An atlas is a large rectangular image (or a set of square im-
ages) that stores texture in GPU during visualization of the
3D model. Atlas methods first select, for each triangle of the
surface, a KF for its texturing. Then they pack texture patches
of the triangles in the atlas. The first step finds a trade-off be-
tween texture quality and distinguishability of the edges sep-
arating triangles with different selected KFs. These edges are
named seam edges. In the second step, a common practice [1]
is packing of rectangular patches using a best first strategy:
sort the rectangles by decreasing size and pack them row by
row forming levels [9]. We also use a method based on [9].

2.4. Seam leveling

Gain-bias corrections alone cannot deal with color disconti-
nuities which appear at seam edges, e.g. if the scene is non-
Lambertian. Seam leveling greatly reduces the residual dis-
continuities by color updating at a higher level of detail. The
previous leveling methods first estimate a color offset for each
texture vertex, then add to the texture patches an interpolation
of the offsets (e.g. [16, 13]). However this requires a lot
of unknowns (a RGB color per surface vertex) and involved
methods, especially if the L1-norm is used to measure the dis-
crepancy between two colors [13] instead of least squares.

Our seam leveling method has differences with the previ-
ous ones. First it deals with the sky texturing. Second it di-
vides the number of unknowns by a magnitude thanks to a few
color offsets per rectangular patch. Last it takes as input the
atlas, not the KFs, with an advantage: it avoids loading/saving
of the KFs (this is time consuming for thousands of KFs).

3. OVERALL METHOD

3.1. Keyframe and image definitions

The KFs are selected from the input videos by SfM [11].
Since our 360 camera is a multi-camera, a KF is a concatena-
tion of several images taken at the same time by the monocu-
lar cameras forming the 360 camera. Nowadays most 360 cam-
eras are composed of two opposite and similar fisheye cam-
eras that have a common Field-of-View (FoV). Thus a KF has
two images, each image is bounded by a circle, and the com-
mon FoV is projected into annuli of same sizes (Fig. 1).

3.2. Global corrections of the keyframes

This step deals with two problems: changes of camera param-
eters and sky texturing. It takes as input the original KFs and
generates a new version of the KFs with gain-bias corrected
pixels for the scene and with a consistent texture for the other
pixels of the sky. There are three sub-steps.

Fig. 1. Images (left) taken by two opposite and similar
fisheyes of a 360 camera and the annuli (right) where their
common field-of-view is projected.

3.2.1. Estimation of gain and bias corrections

Photometric parameters of cameras can change during acqui-
sition, e.g. when the 360 camera goes from a region in the
shade to a region in the sun, or vice versa. Furthermore, cam-
eras composing the multi-camera can have different parame-
ters at the same time. Indeed, the sun can be seen by a camera
but not by another one. Thus gain-bias corrections are useful:
they reduce seam discontinuities and make easier the seam
leveling at the end of our process.

We estimate a 1D affine transformationAi, for each image
i, that maps original luminance to corrected luminance, such
that a sum of luminance discrepancies is minimized. Such
a discrepancy is computed for each image pair {i, j} with a
common FoV. Let hji and hij be gray level histograms of the
projection of the common FoV in images i and j, respectively.
They should be same after the correction. Let Ai(h

j
i) be the

histogram of the image by functionAi of the gray levels of hji .
The {i, j}-th discrepancy can be a distance between Ai(h

j
i)

and Aj(h
i
j). We also need a prior term in the sum for two

reasons: the minimization problem has a spurious solution
(∀i, Ai = 0) and a translation ambiguity. (The sum is the
same if we replace Ai by c+Ai where c is constant.)

This scheme is detailed latter (in Section 4) for the paper
clarity. We benefit of assumptions (360 camera, ordered se-
quence of KFs) to design an efficient method for thousands of
multi-camera KFs. Here we only need to know that the i-th
image has a 1D affine transform Ai.

3.2.2. Sky segmentation

The sky cannot be correctly reconstructed due to low texture,
moving texture of the clouds, or very small baseline. Thus
important artifacts occur during the visualization of the tex-
tured model if all sky triangles are textured like the scene. We
greatly reduce these artifacts by first segmenting the sky, then
replacing it by a single mean color in all KFs, e.g. blue for
sunny sky. There are two consequences. First the size of the
texture atlas decreases since only one color is needed by the
triangles that are fully projected in the sky region. Second
falsely-labeled sky regions can generate important visual arti-
facts, e.g. a blue stain on the ground, that have to be removed.

Now we outline the sky segmentations (details in Sec-
tion 5). Since surface reconstruction methods detect (e.g.

[7]) or remove (e.g. [5]) triangles that correspond to the sky,
we use them to initialize the segmentations by projecting the
scene triangles (or, alternatively, the sky triangles) in all KFs.
However, such initial segmentations are too inaccurate and
must be refined. For example, a triangle can overlap both sky
and scene and thus the boundary between sky and scene pix-
els is inaccurate. Our method is based on histograms. First
the conditional probability p(x|sky) of a RGB color x for the
sky is computed from the histogram of all sky pixels of the
current segmentations in the KF sequence. The estimation
of p(x|scene) is similar. Second the refined segmentations
of all images are initialized by maximum a posteriori estima-
tion: pixel is labeled sky iff its color x meets p(sky|x) >
p(scene|x). Third we remove falsely-labeled sky pixels of
the ground surface, i.e. if the directions of their correspond-
ing rays point down. Fourth small sky regions and small scene
regions are removed. Last we use time consistency to re-
move falsely-labeled sky pixels. Since the 360 camera moves
continuously in the scene and since the KFs are time-ordered
thanks to their indices, the KFs including sky pixels form lists
of successive indices. If the size of such a list is small, we
question the sky detections in the corresponding KFs.

3.2.3. Keyframe corrections

For each KF, we first apply the corrections in Section 3.2.1 to
each RGB channel of all pixels inside the bounding circles.
Since each image has its own correction function Ai and each
KFs has several images (two images for most 360 cameras),
several Ai are used in a KF. Furthermore, corrected channel
value x ∈ [0, 255] is saturated to be in the allowed range, i.e.
we correct x by min{255,max{0, Ai(x)}}.

Then we apply corrections for texturing the sky of the KF.
At first glance, we force to the mean sky color all sky pixels
segmented by Section 3.2.2. However, this provides unnatural
color discontinuities at the boundary separating sky and scene
pixels. We reduce them by RGB color blending in the sky
half-part of a tubular neighborhood of the boundary. Let δ0 >
0 be the tubular radius and δ(p) be the Euclidean distance
(approximated by Chamfer distance transform [2]) between a
pixel p and the set of the not-sky pixels. Now the new color
of p is defined by three cases: the mean sky color csky if
δ(p) ≥ δ0, its previous color cprev if δ(p) = 0, otherwise
(1− w)cprev + wcsky with w = min{1, δ(p)/δ0}.

3.3. Texture atlas

This step takes as input the triangulated surface and the cor-
rected KFs (Section 3.2). Its output is the texture atlas: a
concatenation of rectangular patches [9], that “properly” cov-
ers the projection of each triangle in its selected image for
texturing. The covering is properly done in the sense that (1)
each triangle projection is included in a rectangular patch and
(2) each rectangular patch has a margin of a few pixels for the
texture minifying of the rendering (Fig. 2).

Fig. 2. Left: triangles of the surface in 3D. Middle: two rect-
angular patches (texture is not shown) among others in the at-
las. These patches include projections of the triangles in their
texture image. The bold edges are the seam edges of two com-
ponents. Right: tubular neighborhood (in gray) of the seam
edges where mean and variance of color are computed.

3.4. Seam leveling in the texture atlas

We would like to moderate the number of unknown colors
in comparison to the previous methods that have at least one
unknown color per surface vertex. At first glance, we ben-
efit from the atlas computation (Section 3.3) by estimating
one color offset per rectangular patch (packed in the atlas)
such that the texture discontinuities in the seam edges are
reduced, then by adding the offset to the whole rectangular
patch. Now we remind that a rectangular patch is a bounding
box that includes triangle projections. These projections can
have several connected components (middle of Fig. 2) with
one RGB color offset per component. Thus we estimate one
offset per component. The resulting number of unknowns is
more tractable: its magnitude is between that of the gain cor-
rection (KF number) and that of the previous methods (vertex
number). Here we separate two cases for the paper’s clarity.

3.4.1. Ignore the sky segmentation

We estimate a color offset ok ∈ R3, for each component k,
such that a sum of color discrepancies is minimized. Such
a discrepancy is computed for each component pair {k, l}
whose triangles share seam edges. Let ckl and clk be color
means in tubular neighborhoods (right of Fig. 2) of the seam
edge projections in components l and k respectively. They
should be same after the correction. Thus the {k, l}-th dis-
crepancy is a weighted norm of (ckl + ol) − (clk + ok). We
add a prior term to the sum and finally minimize

{ok} 7→
∑
{k,l}

wk,l||(ckl + ol)− (clk + ok)||+ λ
∑
k

||ok|| (1)

where λ and wk,l are weights which are described below. The
prior term removes an ambiguity (The minimizer is defined
up to a constant if λ = 0.) and also reduces the risk of color
saturation due to offset add. (The larger λ, the lower the risk
of gray level outside of [0, 255].) We use the L1-norm ||.||
since it is more robust than the squared Euclidean norm [13].

All ckl and wk,l are computed before the minimization.
The weightwk,l must be small if at last one of the color means
ckl and clk is not meaningful, i.e. if color variances are large

in the neighborhoods where these means are computed. Let

wk,l =
Lk
l + Ll

k

1 + σk
l + σl

k

with σk
l =

√
rkl + gkl + bkl

3
, (2)

(rkl , g
k
l , b

k
l) are the variances of the 3 RGB channels, Lk

l is
the normalized length of the seam edges between k and l in
the rectangular patch of l (i.e. ∀l0,

∑
{k,l0} L

k
l0

= 1). Both
(rkl , g

k
l , b

k
l) and ckl are computed in a same neighborhood.

We minimize the convex function in Eq. 1 using a gradient
descent with a varying1 step size γ. In practice, we improve
the convergence by approximating each absolute value of ||.||
by a C2 continuous function x 7→

√
x2 + ε2−εwhere ε = 10.

3.4.2. Deal with the sky segmentation

If we use the method in Section 3.4.1, the sky is subdivided
in several components whose estimated color offsets ok are
different. Thus we do not obtain what we want: a sky with
an uniform color. We solve this by freezing ok = 0 during
the minimization for each k whose proportion of sky pixels is
above a threshold (0.1 in the experiment).

4. ESTIMATION OF GAIN-BIAS CORRECTIONS

Section 4.1 adapts the scheme in Section 3.2.1 to accelerate it
and removes both spurious solution and translation ambiguity.
Then Section 4.2 describes the sparse structure of the result-
ing linear least square problem. Last Section 4.3 explains how
to apply efficiently the method in our multi-camera case.

4.1. Minimization problem

A drawback of the scheme is that histograms are involved dur-
ing the minimization. This is computationally expensive and
complicates the solving, especially to obtain the global mini-
mizer for a large sequence of KFs. Thus we start by replacing
histogram discrepancies by other discrepancies.

Let Aj
i be the 1D affine transformation that minimizes a

distance2 between histograms Aj
i (h

j
i) and hij . Here we use

the standard symmetric Chi-square [4]. Thus we can write
Aj

i (h
j
i) ≈ hij . Similarly, Section 3.2.1 implies that the target

Ai and Aj meet Aj(h
i
j) ≈ Ai(h

j
i). We obtain

Aj(A
j
i (h

j
i)) ≈ Aj(h

i
j) ≈ Ai(h

j
i) (3)

and see that Aj ◦ Aj
i ≈ Ai. Then we replace the discrepancy

between histograms Ai(h
j
i) and Aj(h

i
j), for each image pair

1First initialize γ = 1, then apply γ ← 2γ after a successful iteration or
γ ← γ/2 otherwise. Use 2000 iterations and λ = 10−3.

2Here we have a histogram for gray levels in image and a histogram for
gray levels mapped by 1D affine transform. The former are in {0, 1, · · · 255}
but the latter are not. Since two histograms need same gray levels for com-
puting distance between them [4], we truncate the latter to the closest integers
and extend the former to the integer set (add bins with zero value).

{i, j} involved in the sum of the scheme, by another discrep-
ancy d2(Aj ◦ Aj

i , Ai) between 1D affine transforms where d
is a distance to be defined.

We also add prior terms d(Ai, I),∀i to the sum where I
is the identity function. By doing this, both spurious solution
and translation ambiguity disappear. We also reduce the risk
of saturated pixels, since the range of a corrected pixel value
Ai(x) becomes more similar to its original value x ∈ [0, 255].
Thus we minimize the sum

{Ai} 7→
∑
{i,j}

d2(Aj ◦Aj
i , Ai) + λ′

∑
i

d2(Ai, I) (4)

where λ′ is a small and positive weight.
Last we define a value of d(A,B) that is similar to gray

level difference |A(γ)−B(γ)| where γ ∈ [0, 255]. Let

d(A,B) =
√
(A(α)−B(α))2 + (A(β)−B(β))2 (5)

where 0 ≤ α < β ≤ 255. Then d is a (Euclidean) distance
on the set of 1D affine transforms. We choose α = 1

4256 and
β = 3

4256, which are well spread in the gray level range.

4.2. Sparse structure

Thanks to Eqs. 4 and 5, we obtain a linear least square prob-
lem whose unknowns are the coefficients ai, bi of Ai : x 7→
aix+bi where i ∈ {1, 2, · · ·n} and n is the number of images.
By choosing the unknown ordering a1, b1, a2, b2, · · · an, bn,
the square matrix associated to the least square problem has
the following structure. It is composed of n×n blocks of size
2×2. The block in the i-th column and j-th line is zero unless
i = j or unless the pair {i, j} is in the sum of Eq. 4.

This structure is similar to that of the reduced camera sys-
tem of a bundle adjustment for the KF sequence [15], if the
indices i and j are those of KFs and if we only retain the com-
mon FoV pairs {i, j} such that the i-th and j-th KFs have a
common track of matched (inlier) interest points. A differ-
ence is that the 6×6 blocks of the reduced camera system are
replaced by 2 × 2 blocks. Then the square matrix is sparse
and solving methods are in [15].

4.3. Application

This section explains how to apply Sections. 4.1 and 4.2 with
KF indices instead of image indices, so that the dimension of
the square matrix is divided by the image number per KF.

First we compute, for each KF, “local” corrections of their
images as if we do image stitching. In the general case where
there are k images per KF, we can solve Eq. 4 with all possi-
ble pairs {i, j} in {1, 2 · · · k}. Here we only detail the most
frequent case described at the beginning of Section 3.1 with
k = 2. Let h′ and h′′ be the gray level histograms of the
first and second images in a KF restricted to annuli project-
ing their common FoV (Fig. 1). In this case, we only need to

estimate one 1D affine transform B, that minimizes the Chi-
square between histograms B(h′) and B−1(h′′). This means
that B (respectively, B−1) is the local correction of the first
(respectively, second) image of the KF. This also avoids the
choice of λ′ and it is equivalent to estimate C by minimizing
the Chi-square between histograms C(h′) and h′′ such that
C = B ◦ B. Then we correct the gray levels of the two im-
ages by B and B−1. From now, we have notation Bi for the
B of the i-th KF. We also compute the gray level histogram
hi for the whole corrected i-th KF using Bi and B−1i .

Second we compute Aj
i , the transformation from the his-

togram of the i-th KF to the histogram of the j-th KF re-
stricted to the projection of their common FoV. We only con-
sider FoV of all adjacent pairs such that j = i + 1 and a few
dozen of pair {i, j} provided by the loop closure involved in
SfM. As a consequence, the i-th and j-th KFs are taken at
very close locations. Thanks to our omnidirectional camera,
the common FoV of i and j is roughly equal to both FoV of i
and j. Thus we have hji ≈ hi and hij ≈ hj and estimate Aj

i

by minimizing the Chi-square of histograms Aj
i (hi) and hj .

Once all Aj
i and Bi are computed, we estimate all Ai by

following Sections 4.1 and 4.2. We use λ′ = 10−2 and the
large linear system is solved by the profile Cholesky factor-
ization [15]. Last we obtain the correction functions of both
images of the i-th KF: Ai ◦Bi for the first one and Ai ◦B−1i

for the second one. Note the index change due to KF-image
conversion: this Ai ◦ Bi (respectively, Ai ◦ B−1i) is equal to
the A2i (respectively, A2i+1) in Section 3.2.

5. SKY SEGMENTATION IN THE IMAGES

5.1. Prior segmentation

The method in [7] estimates a closed and triangulated surface.
Thus both scene (i.e. not-sky) and sky are completely covered
by triangles. This method also applies an operation named
“Sky Removal” that labels triangles that correspond to the
sky: first it computes the sky vector (vertical direction toward
sky), then it intersects triangles above the camera trajectory
with respect to the sky vector. We obtain a prior segmenta-
tion by projecting these sky triangles (or the scene triangles)
in the KFs using GPU. Alternatively, the sky triangles could
be removed by a removal of hallucinating triangles [5].

5.2. Maximum a posteriori estimation

Let hsky and hscene be histograms for all sky pixels and all
scene pixels in the KF sequence provided by Section 5.1, re-
spectively. Both histograms have 2563 RGB bins. In practice,
we avoid to load the entire KF sequence just for that and only
take 200 KFs that are evenly spread in it. Let p(x|sky) be
the conditional probability that a pixel has RGB color x given
that the pixel is in sky. Let p(sky) be the probability that a
pixel is in the sky. Assuming that the prior segmentation is

close to the refined segmentation, we approximate p(x|sky)
by the value of the bin of hsky corresponding to x. The prob-
ability p(sky) is also approximated by the ratio of the current
sky pixels in the 200 KFs. Both p(x|scene) and p(scene) are
similarly approximated using hscene. Note that the (black)
pixels, that are outside the image circles (Fig. 1), are ignored
in all computations since they are neither sky nor scene. Now
the posterior distributions meet

p(sky|x) ∝ p(x|sky)p(sky)
p(scene|x) ∝ p(x|scene)p(scene). (6)

We initialize the refined segmentation of all KFs as follows:
a pixel is in sky iff its color x meets p(sky|x) > p(scene|x).

5.3. Ground surface

We remove bad sky pixels that are in the projection of the
ground surface. Indeed, the ground is a scene part that can
have same colors as the sky, e.g. concrete ground with white
saturated pixels like the sun. These errors can have large
sizes, but, fortunately, they are easy to be corrected assuming
that the ground is an infinite and horizontal plane. All pixels
whose rays are pointing toward the ground are forced to be
in scene, i.e. the scalar product of their ray direction with the
sky vector (Section 5.1) must be negative.

5.4. Small regions

Now the goal is to remove small sky connected components
(CC) in the scene and small scene CCs in the sky. First, we
apply a morphological dilation to the scene pixels with a 5×5
square for favoring the scene regions during CC computa-
tions. Second, small CCs of sky pixels in each image are
removed (if their area is less than 1/10 of that inside the im-
age circle). Third, we only retain in scene the pixels of the
greatest CC of the scene pixels in each image.

5.5. Temporal consistency

Once the steps above are done, we examine the sequence seg-
ments formed by maximal numbers of successive KFs with
detected sky region(s). If such a number is below a threshold,
we suspect that the corresponding KFs have bad sky detec-
tion(s) and we remove all sky regions in these KFs. In ex-
periment, the threshold is set to 20. This sounds brutal but
helps to remove important sky errors below concrete ceilings
of a corridor and a porch in our experiment. Thus important
artifacts are avoided during visualization (no concrete ceiling
with blue stain). This can generate minor artifacts in compar-
ison: some undetected sky regions are textured using color
offsets for visualization, but the greatest ones are detected in
a lot of successive KFs and have the mean sky color.

Fig. 3. Top view of the points used by the surface reconstruc-
tion, the camera trajectory, our helmet-held 360 camera.

Fig. 4. Top and bottom views of the textured 3D model.

6. EXPERIMENTS

6.1. Overall results

We start from two 2496×2496 videos at 30Hz taken by biking
during 25 minutes in a campus using a helmet-held Garmin
Virb 360. The SfM includes a multi-camera self-calibration
and selects 6553 KFs [11]. Then the triangulated surface is
reconstructed using [7] and [8]. The former reconstructs the
surface using manifoldness and lowered genus constraints.
The latter (namely, the preprocessing 2+1+3 in [8]) improves
the result (e.g. thin structures) using a local-convexity con-
straint. The estimated surface is a closed manifold with 6.6M
triangles. Fig. 3 shows the 360 camera, the camera trajectory
and the point cloud used by the surface reconstruction.

Fig. 4 shows a top view and a bottom view of the com-
plete surface textured by our method (Section 3). At this large
scale, we see that the ceiling is mostly segmented by the blue
sky color (as expected for a sunny scene) and that there are
some regions for trees. The ground surface is mainly tar and
grass including regions in the shade and in the sun.

Fig. 5 compares the results of our texturing pipeline (Sec-
tion 3) and that of a texturing pipeline reduced to the atlas
computation alone. This shows the interest of the sky segmen-
tation combined with the color corrections for the scene. We
list improvements. First column: sky triangles have different
colors without our corrections and the same color with our
corrections, the color discontinuities of the ground near the
camera trajectory are greatly reduced, a too brightly region of
a tree in the shade becomes dark as its neighborhood. Second
and third columns: no blue stains on the concrete ceilings due
to false sky detections, removal/reduction of color disconti-
nuities in the ground and in the ceilings. We also observe
improvements for both ground and sky in the other columns.

See the demo section “Photogrammetry for VR” at http:
//maxime.lhuillier.free.fr to explore a simplified
version of this 3D model by using VR headsets (currently:
Oculus Quest and Go) or Sketchfab for PCs.

6.2. Details

First we provide computation times obtained with a standard
laptop (I7-5500U 1600MHz DDR3L, 2 cores) and using multi-
core programming (OpenMP) for the most time-consuming
computations. The global corrections (Section 3.2) take 2h12:
48m to project the scene triangles in the 6553 KFs and save
the resulting binary masks, 18m to compute the 1D affine
transforms (and load all KFs), 66m to correct sky-scene and
reload/save all KFs. The computation times of surface recon-
struction, atlas computation (Section 3.3) and seam leveling
(Section 3.4) are 8m30, 32m and 16m20, respectively.

Second Fig. 6 shows the texture atlas, which must not be
too large for GPU. The user chooses a width of 16384 pixels
and a maximal height of 32768 pixels. Then the atlas method
divides the KF dimensions by 3 and obtains a height of 22432
pixels. The sky segmentation helps to reduce the atlas size
since most triangles in the sky have only one color. (The
height is 30032 if the sky is not segmented.)

The atlas is composed of 318k rectangular patches ex-
tracted from the corrected KFs. We note that the helmet and
user shades are projected in all KFs (e.g. in Fig. 1). Their
textures must not be used for the ground surface. Thus the
user defines bounding boxes in the KFs (only two boxes for
the whole sequence) that include the helmet and most user
shades, then the triangle textures are prohibited in these boxes.

Third Fig. 7 shows KFs in three cases: (1) before correc-
tions, (2) with the initialization of sky segmentation by tri-
angle projections (Section 5.1), and (3) after the global cor-
rections (Section 3.2). The sky segmentation is not a trivial
problem due to the large color range of the sky in (1). We
see that the initialization provides incorrect results in (2): the
top boundaries of buildings are inaccurate especially for low
textured buildings, and the main part of the corridor ceiling is
falsely-labeled sky. Thus a rendering of the 3D model with

http://maxime.lhuillier.free.fr
http://maxime.lhuillier.free.fr

Fig. 5. Comparisons of renderings obtained by the atlas computations alone (top) and with the complete texturing pipeline
(middle) for our scene. The surface normals are also given (bottom). Each KF pose is also shown using gray disks. Best viewed
in colors and by zooming in.

Fig. 6. Global (left) and local (right) views of the atlas.

(2) is bad for these parts of the scene. The segmentation is
greatly improved in (3) for buildings and concrete ceiling.

Last we detail the seam leveling, which adds a color off-
set to each component. There are 463k components, each of
them is included in a rectangular patch. The gradient descent
divides by 4.2 the initial value of the cost function in Sec-
tion 3.4.1. The risk of saturation for a RGB channel is low:
only one over 2280. Fig. 8 shows that σl

k in Eq. 2 is useful.
If we ignore it (i.e. if we use σl

k = 0,∀{k, l}), visual arti-
facts occur, e.g. for two components sharing seam edges that
separate two scene regions with different colors.

6.3. Comparison with previous work

We also compare our results with those obtained by the textur-
ing pipeline of [16], that we name “T”. Since T uses perspec-
tive images during texturing that are different to our fisheye
images, T needs image conversions. We convert each image
(two per KF) to 3 perspective images that cover most of its
FoV with important overlaps, but excluding the projections
of the helmet and most user shades. Fig. 9 shows drawbacks
of T in comparison to our method. First the texturing can
be perturbed near sharp edges of buildings. It can be over-
smoothed in both sides of these edges if the sides have differ-

Fig. 7. Two KFs and their corrections. There is one KF on the
right, the other is on the left. Each KF has two images. From
top to bottom: texturing input, sky segmentation initialization
by triangle projections (Section 5.1), our global corrections
(Section 3.2). Best viewed in colors and by zooming in.

Fig. 8. Without (left) and with (middle) the use of color vari-
ances in Eq. 2.

Fig. 9. Comparison between our method (first and third
columns) and [16] (second and fourth columns). Our method
improves texture near edges (top) and in the sky (middle), it
does not remove slanted triangles (bottom).

ent colors. Second the sky texturing has odd color variations
and sometimes discontinuities near buildings. We believe that
our uniform sky, although it is simple and not perfect, is less
chocking for the human eye. Third several triangles are re-
moved on the ground if they are too slanted with respect to
the camera poses, e.g. in a parking. (Theses triangles are re-
placed by a dark blue color by the viewer.) T takes 4h46
(add 21m for our image conversions) and it does not include
a global correction like ours gain-bias correction of the KFs.
In other experiments (not in the paper), we try a photometric
outlier removal option of T, but it is not able to remove a lot
of helmet-shade textures from the ground surface.

7. CONCLUSION

This paper presents the first texturing pipeline designed for
immersive scene models reconstructed by moving a consumer
grade 360 camera. This experimental context is more difficult
than the standard ones: UAV images and RGB-D input. We
contribute on many steps including gain-bias corrections and
seam leveling to deal with an ordered sequence of thousands
of keyframes, that are selected in input videos taken by such
a camera. We also propose to segment the sky for improving
the rendering of the 3D model. Although our sky texturing is
simple (uniform color with a blending near the solid scene),
it removes major artifacts generated by other methods and it
provides a result that is less chocking for the human eyes.
Furthermore it is a first step toward future methods, that ren-
der a physically plausible sky inspired by chroma-key. Future
work also includes detection of undesirable texture areas in
the images like helmet and user shades, removal of lens flare
and other sun effects.

8. REFERENCES

[1] C. Allène, J.P. Pons, and R. Keriven. Seamless image-
based texture atlas using multi-band blending. In ICPR,
2008.

[2] D.G. Bailey. An efficient euclidean distance trans-
form. In International workshop on combinatorial im-
age analysis, 2004.

[3] M. Brown and D.G. Lowe. Automatic panoramic image
stitching using invariant features. IJCV, 74, 2007.

[4] M. Deza. Encyclopedia of distances, chapter Distance in
probability theory. Springer, Berlin, Heidelberg, 2013.

[5] M. Jancosek and T. Pajdla. Hallucination-free multi-
view stereo. In ECCV workshop, 2010.

[6] X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen,
J. Dong, L. Liu, Z. Jie, J. Feng, and S. Yan. Video scene
parsing with predictive feature learning. In ICCV, 2017.

[7] M. Lhuillier. Surface reconstruction from a sparse point
cloud by enforcing visibility consistency and topology
constraints. CVIU, 175, 2018.

[8] M. Lhuillier. Local convexity reinforcement for scene
reconstruction from sparse point clouds. In IC3D, 2019.

[9] A. Lodi, S. Martelo, and M.Monaci. Two-dimensional
packing problems: a survey. European journal of oper-
ational research, 141, 2002.

[10] R.P. Mihail, S. Workman, Z. Bessinger, and N. Jacobs.
Sky segmentation in the wild: an empirical study. In
WACV, 2006.

[11] T.T. Nguyen and M. Lhuillier. Self-calibration of omni-
directional multi-camera including synchronization and
rolling shutter. CVIU, 162, 2017.

[12] C. La Place, A.U. Khan, and A. Borji. Segmenting sky
pixels in images: analysis and comparison. In WACV,
2019.

[13] M. Rouhani, M. Fradet, and C. Baillard. A multi-
resolution for color correction of textured meshes. In
3DV, 2018.

[14] T. Shen, J. Wang, T. Fang, S. Zhu, and L. Quan. Color
correction for image-based modeling in the large. In
ACCV, 2016.

[15] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A. Fitzgib-
bon. Bundle adjustment – a modern synthesis. In Vision
Algorithms: Theory and Practice, 2000.

[16] M. Waechter, N. Moehrle, and M. Goesele. Let there
be color! large-scale texturing of 3d reconstructions. In
ECCV, 2014.

