
FROM PHOTOGRAMMETRIC RECONSTRUCTION TO IMMERSIVE VR ENVIRONMENT

Maxime Lhuillier

Université Clermont Auvergne, CNRS, Institut Pascal, F-63000 Clermont Ferrand, France

ABSTRACT

There are several steps to generate a VR environment from
images: choose experimental conditions (scene, camera, tra-
jectory, weather), take the images, reconstruct a textured 3D
model thanks to a photogrammetry software, and import the
3D model into a game engine. This paper focuses on a post-
processing of the photogrammetry step, mostly for outdoor
environments that cannot be reconstructed by UAV. Since VR
needs a 3D model in a good coordinate system (with a right
scale and an axis that is vertical), a simple method is proposed
to compute this. In the experiments, we first reconstruct both
urban and natural immersive environments by using a helmet-
held Gopro Max 360 camera, then import into Unity the 3D
models in good coordinate systems, last explore the scenes
like a pedestrian thanks to an Oculus Quest.

Index Terms— VR Environment, Vertical Direction, Scale,
Photogrammetry, 360 Camera, Hough Transform.

1. INTRODUCTION

Although several photogrammetry software exist today, they
produce 3D models that are not directly usable by VR. Indeed
VR needs a 3D model in a good coordinate system: the scale
must be physically plausible and a coordinate axis must be
vertical. A good scale is needed for stereoscopic rendering,
realistic speed and motions of the user in the VR environ-
ment. Furthermore the vertical direction must be known for
drawing as vertical lines in the head-mounted display vertical
lines in 3D when the user looks the scene with usual poses of
the head (no roll, no pitch). Otherwise, vertical scene com-
ponents like walls and facades appear to be oblique, and the
immersion is unrealistic. Even worse, cybersickness can in-
crease since these visual stimuli are not those of the daily life
and since there is a sensor conflict between the vertical seen
by the eyes and the vertical detected by the vestibular sys-
tem [17]. There are other reasons why a photogrammetric
reconstruction is not directly usable by VR (e.g. simplify and
clean up the mesh), but they are not the topics of the paper.

Unfortunately, a good coordinate system is not guaranteed
by standard structure-from-motion included in photogramme-
try software, which can only reconstruct a scene up to a sim-
ilarity transform of the 3D space, if the camera has only one
centre like a pinhole camera [9]. (We remind that a similarity

transform has 3+3+1 DoF: rotation, translation and scale.) If
the camera has several centres, like most 360 cameras com-
posed of several monocular cameras, and if the baseline be-
tween the component cameras is known, the scene is theoreti-
cally reconstructible up to an Euclidean transform. (Which
has 3+3 DoF: rotation and translation.) But the estimated
scale can be inaccurate if the baseline is small.

In practice, both scale and vertical are manually estimated
thanks to the GUI of a software like Blender [2], but this may
be tedious for large environments. Alternatively, the vertical
direction can be computed up to orientation (toward sky or
ground ?) by assuming that the camera motion is roughly on
a horizontal plane during the acquisition of the images. Then
the orientation is defined by the user or an additional assump-
tion (e.g. the ground is projected in the bottom of the images)
by multiplying the vertical by -1 if needed. Last the 3D model
is rotated such that the vertical direction becomes a vector of
the canonical basis of R3. Although this is often OK, there are
scenes whose such a vertical estimation is too inaccurate. The
paper presents examples: a touristy city build on an inclined
ground and a non-planar motion in basalt canyons.

Here we propose a simple but new method to compute
both scale and vertical direction (with orientation) from the
output of standard photogrammetry assuming that

1. the height of the camera (with respect to the ground sur-
face) during acquisition is roughly constant and known

2. the surface reconstructed by photogrammetry is com-
plete and closed: its triangles cover both ceiling (in a
large sense: foliage, sky ...) and ground

3. we know whether the height of the camera is smaller
than the difference of heights between the ceiling and
the camera (It is for most outdoor scenes.)

4. the scene is anisotropic as follows: the density of the
normal of its surface is higher near the horizontal di-
rections and near the vertical direction than elsewhere.

The first assumption is easy to meet in practice for a given
image acquisition setting, e.g. for a helmet-held camera by
adding an offset to the height of the people who takes the im-
ages. The second one requires that the ceiling triangles are
not removed by the photogrammetry software, even if they
are in the sky. If the images are taken at the ground level with

a 360 camera, 3D points are reconstructed all around the cam-
era and the camera is in the convex hull of the 3D points. As a
consequence, the surface reconstructed by the standard meth-
ods are closed. This also implies that the third assumption is
true for most outdoor scenes: the ground-camera distance is
smaller than the ceiling-camera distance thanks to high scene
components (buildings, trees, ...). For an indoor scene, an
estimate of the ceiling height is needed. Last we justify the
anisotropy assumption. On the one hand, the ground has large
area and its slope is moderated. On the other hand, other
scene components have major (almost) vertical areas like fa-
cades in urban scenes or trunks in natural scenes. Thus the ex-
pected normals are mostly near the vertical direction or near
the horizontal directions, respectively.

2. PREVIOUS WORK

Photogrammetry software provides neither scale nor verti-
cal direction, unless its structure-from-motion step integrates
measures of an additional sensor (Sec. 2.1). We also compare
our work to a previous one that also uses Hough transforms
in Sec. 2.2.

2.1. Additional sensor for photogrammetry

GPS and IMU measures can be integrated with both terres-
trial [10] and aerial [8] imagery. Bundle adjustment [18] si-
multaneously refines parameters of both camera poses and 3D
points by minimising a sum of reprojection errors, which can
be augmented by a GPS term [11] and an IMU term [14].
Bundle adjustment needs a parameter initialisation, which can
also be done thanks to GPS [7] and IMU [10]. GPS provides
georeferenced reconstruction, which implies that both scale
and vertical direction are known. Unfortunately, GPS has
unreliable measures in the terrestrial case at locations where
GPS satellites are occluded by the scene, e.g. by buildings
in urban canyons. IMU measures translation acceleration (in-
cluding gravity) and rotation acceleration. The vertical can be
computed when the IMU does not move, then the scale can
be computed by integrating over time (only a few seconds)
the IMU measures between two locations of the camera. The
method in the paper does not need such additional sensors.

2.2. Hough transform for detecting cylinders

In a different context, [16] estimates cylinders from a cloud
of 3D points, that is obtained by scanning an industrial site.
This method is based on Hough transforms to deal with out-
liers and multiple instances. However each cylinder has 5 pa-
rameters (2 for the cylinder direction, 2 for the axis position,
and 1 for the radius) and a 5D Hough transform is intractable
in practice. Thus this method has a two steps: first find po-
tential cylinder directions using a 2D Hough transform, then
estimate positions and radii using 3D Hough transforms. Our

method also uses a 2D Hough transform but with differences:
there is only one direction (the vertical), we don’t need a set
of circular cylinders in the scene, the input is a triangulated
surface, the votes are weighted, the search space of the direc-
tion is only a segment of an unit hemisphere, last the vertical
and scale estimations are linked.

3. RESET THE COORDINATE SYSTEM

Let v ∈ R3 be the vertical direction pointing toward the sky in
the coordinate system used by photogrammetry. First Sec. 3.1
defines a search space for v. Then Sec. 3.2 estimates v up to
its orientation, i.e. it estimates a εv where ε ∈ {−1,+1} in
the search space. Last Sec. 3.3 finds the good orientation and
Sec. 3.4 updates the coordinate system of the 3D model.

3.1. Search space for unoriented vertical

The locations li ∈ R3 of the camera during the image acqui-
sition are also known in the coordinate system used by pho-
togrammetry. We first obtain a rough estimate v0 of εv by a
principal component analysis (PCA): v0 is the singular vec-
tor with the smallest singular value of the covariance matrix
of the li. We have v ∈ {+v0,−v0} if the camera motion is
planar and horizontal. Then the search space of εv is a subset
of the unit sphere of R3: the unit vectors u forming an angle
with v0 that is less than a threshold α. Since we would like to
deal with roughly planar ground surfaces with moderate slope
angles, a large enough α is needed. Furthermore, α ≤ π/2
since a hemisphere contains all unoriented directions.

3.2. Unoriented Vertical

The vertical direction is detected by a 2D Hough transform.
First the search space of εv is sampled in a set of vertical can-
didates. Then every triangle of the surface votes for all ver-
tical candidates that are almost parallel to the triangle. (Tri-
angle normal and vertical candidate are almost orthogonal.)
Thus the vertical candidates of a triangle form a segment of a
great circle in the unit sphere. Furthermore, the votes of each
triangle are weighted by the triangle area, such that the vote
result does not change if the triangles are subdivided. Last εv
is the vertical candidate that maximises the votes.

Here we explain how this method provides the expected
result thanks to the anisotropy assumption in Sec. 1. An im-
portant area of the surface is formed by roughly vertical trian-
gles. Each vertical triangle votes for a segment of a great cir-
cle, and all these great circles intersect at two opposite vectors
which have the target vertical direction, whatever the normals
of the vertical triangles. (Since the great circle is in a plane
that is parallel to that of the triangle.) Thus the votes near
the target vertical direction are high. Furthermore, the votes
near the horizontal directions are also high since the ground is
roughly horizontal and has a large area too. (Each horizontal

triangle votes for all horizontal directions). Thus the risk is
to obtain a bad εv if one of the “horizontal votes” (i.e. votes
for roughly horizontal directions) is greater than the vertical
votes (similarly). However, the angle between v0 and every
horizontal direction is greater than the angle between v0 and
the vertical, since v0 is approximately vertical. Now we see
that a small enough α rejects the horizontal votes and retains
the vertical votes. This implies that such a bad (horizontal)
εv does not appear. Since the only remaining high votes are
vertical, εv is vertical.

In the experiments, our trade-off is α = π/4 to allow a
moderate ground slope (Sec. 3.1) and to discard the votes of
the ground triangles. We accumulate the votes for vertical
candidates corresponding to pixels in an image, such that the
vertical candidate of a pixel projects on that pixel by a pinhole
camera [9]. The camera is centred at zero like the unit sphere,
its field-of-view is 2α, it maps v0 at the centre of the image.
Thus each triangle votes for the pixels along a line segment.

3.3. Oriented Vertical

Now εv is known but both ε and v are unknown. Thus there is
a function ε 7→ vε. For each possible value of ε ∈ {−1,+1},
we examine the triangles that are below the camera trajectory
(during the acquisition) in the sense of vε. In more details,
for each camera location li, we collect in a list Li the few
triangle(s) that intersect(s) the half-line hli started at li with
direction −vε. Then we compute a mean mε, for all i, of the
distance between li and the intersection(s) between hli and
every triangle in Li. In practice, we reduce such 3D calcula-
tions into 2D calculations by rotating both surface and camera
trajectory such that the z-axis becomes parallel to vε. We also
use buckets to accelerate the intersection tests.

Thanks to the second assumption (Sec. 1), m−1 and m+1

are camera-ground or camera-ceiling distances. According to
the third assumption, the camera-ground distance is the small-
est one. We obtain v = vε such that ε meets mε < m−ε.

3.4. Change of the Coordinate System

We rotate the 3D model such that the z-axis has the same
direction as v (using a rotation with axis r/||r|| and angle
arcsin(||r||) where r = v ∧ (0 0 1)>). We also rescale it
by multiplying all vertices by h/min{m−1,m+1} where h is
the height of the acquisition camera in meters, thanks to the
first assumption.

4. OTHER DETAILS

These details are not the main topic of the paper, but they are
interesting for re-implementers and experimenters. Sec. 4.1
describes specificities of our 360 camera. Sec. 4.2 focuses on
motion capabilities of the VR user with the help of a motion
surface (Sec. 4.3) for general grounds.

4.1. Photogrammetry using the Gopro Max 360 Camera

The Gopro Max is low cumbersome and has a good resolu-
tion (Details are below.) with a moderated price. It is com-
posed of two fisheye cameras that point in opposite directions.
However it uses a special image format [15] to improve the
compression efficiency: it compresses neither equirectangu-
lar nor original fisheye images1 as the other 360 cameras,
but compresses an equiangular cubemap image with redun-
dancy between borders of cube faces (Fig. 1). The firmware

Fig. 1. A Gopro Max 360 camera and a cubemap image.

of the camera stitches each pair of original fisheye images to
an equiangular cubemap image using an approximate knowl-
edge of the Gopro Max calibration (with a single camera cen-
tre: that of the cube). Then we have to convert each equiangu-
lar cubemap image in a format supported by photogrammetry
software (The list is non-exhaustive here.): an equirectangular
image e.g. by [5], or a traditional cubemap image e.g. by [1],
or several fisheye images using a classical projection model
with radial distortions e.g. by [4]. Thus the photogrammetry
input and output can be degraded.

In practice, the equiangular cubemap images are obtained
from the files (with suffix “.360”) provided by the Gopro Max
as follow. Each file is limited to 4Go (8 minutes) and contains
two synchronised 4096 × 1344 videos at 30Hz. A cubemap
image is a concatenation of two synchronised images, each of
them has three faces of the cube. We first extract two MP4
files from the input files with concatenation over time by us-
ing FFmpeg [3] only twice without loss of quality:

ffmpeg -f concat -i list.txt -map 0:0 -c copy cube1.MP4
ffmpeg -f concat -i list.txt -map 0:5 -c copy cube2.MP4 (1)

where the file list.txt includes lines such as: file ’GS010050.360’.
Then the successive cubemap images are extracted by decom-
pressing simultaneously the two MP4 files.

4.2. Motion Capabilities of the User

The goal is visualisation by VR of immersive 3D models re-
constructed by photogrammetry, which can be large in the
sense of the trajectory length of the acquisition camera: from
several hundreds to a few kilometres in our experiments. Fur-
thermore, we would like that the user of VR

1There is also a file for the original fisheye images with a reduced resolu-
tion and very high compression rate, but it is unusable by photogrammetry.

1. freely moves on the ground like a pedestrian

2. can follow the trajectory of the acquisition camera for
a naive exploration, where the visual quality is good

3. has strong spatial awareness and weak cybersickness.

We would like to meet (1) with a ground that is neither
horizontal nor planar. This is done by enforcing the locations
of the user eyes to be in a “motion surface” that approximates
an offset of the ground surface. Thanks to the first assumption
in Sec. 1, we extrapolate the motion surface from the trajec-
tory of the acquisition camera (more details in Sec. 4.3).

For (2), we augment the 3D model by a small cube with
gray levels at every acquisition location so that the user of VR
can look and follow the acquisition trajectory without spend-
ing time to find where are the good reconstructed parts of the
scene. The user can also visually assess the quality of the
photogrammetry result by moving away from the acquisition
trajectory. The greater the distance between the user and this
trajectory, the greater the visual artifacts due to photogram-
metry inaccuracies or incompleteness.

Last we should meet (3) and choose a motion method for
large virtual environments [19] among steering and telepor-
tations. Unfortunately, the two conditions in (3) seem to be
contradictory and a trade-off must be done. In short, both
spatial awareness and cybersickness are usually greater for a
continuous motion (steering) than for a discrete motion (tele-
portation). The best trade-off is outside the scope of this paper
and we only implement the following capabilities inspired by
VR games: a continuous motion with the left joystick and
a discrete rotation with the right joystick (add ±π/12 to the
yaw angle). The former is also useful for users who want to
assess the photogrammetry result thanks to the motion par-
allax. The latter resets a mean for the next directions of the
exploration in progress. The user remains seated most of time
and can also rotate the head as usual.

4.3. Motion Surface

The motion surface is extrapolated from the trajectory of the
acquisition camera computed by photogrammetry as follows.
Assume that the successive locations (xi, yi, zi) of the acqui-
sition camera are in the coordinate system used by the game
engine for the 3D model. In the case of Unity [6] which we
use, the y-axis is vertical and points toward the sky. Further-
more, the ground is roughly horizontal. Thus we define the
motion surface as a function y = f(x, z), then the left joy-
stick updates the values of x and z, which moves the virtual
camera on the motion surface thanks to f . Let

f(x, z) = a+

∑
i wciyci∑
i wci

where wi = e−
√

(x−xi)
2+(z−zi)

2

b , (2)

a is a vertical offset of the virtual camera with respect to the
acquisition camera, b is a scale factor to set the decrease of

the weights wi with respect to the distance between (x, z)
and (xi, zi), and c is used to skip locations and accelerate the
calculations of f at each frame (assuming that i increases by
acquisition time). Both a and b are in meters. The value of b
is a trade-off: small enough for extrapolation accuracy, large
enough to avoid staircase effects. A non-zero a is useful to
avoid cubes that occlude the field-of-view of the user of VR.

We finish by a note about the coordinate systems. Ours
is right-handed (as usual) with a vertical z-axis toward sky.
That of Unity is left-handed with a vertical y-axis toward sky.
There are two consequences. First, we have to convert the
table of locations (xci, yci, zci) in the C# program needed by
Unity that computes f : there is a −π/2 rotation around the
x-axis and a sign change of the x-coordinate to switch from
right-handed to left-handed. Thus we convert (xci, yci, zci)
to (−xci, zci,−yci). Second, we set Unity to rotate by −π/2
around the x-axis while importing our 3D models. (The sign
change of x is implicitly done here). Then the acquisition
locations and 3D models are consistent in Unity.

5. EXPERIMENTS

5.1. Dataset

The first 3D model “Basalt” is reconstructed from a 360 video
taken by walking during 27 minutes in a geologic site using
one Gopro Max camera mounted on the top of a helmet. The
two sides of the path is composed of basalt prisms, whose
heights are in range 5-20m, and which are degraded by veg-
etation and high humidity. The texture is favourable for pho-
togrammetry, except at a few locations with low light due to
narrow canyon (less than 1m) or where the vegetation is too
close to the camera (less than 50cm). The path is mostly com-
posed of rocks, that can be slippery and are bordered by small
vegetation. Its slope angle is less than π/4, except at a few
small sections where walking is replaced by climbing with
hands or by going down on the buttocks. This path was care-
fully selected before the acquisition since the site is compli-
cated (a kind of labyrinth with obstacles and dangerous sec-
tions) and since the trajectory must include closed loops so
that the structure-from-motion step reduces the drift.

The second 3D model “City” is reconstructed from a 360
video taken by walking during 21 minutes in roads of a me-
dieval city using two Gopro Max cameras, that are rigidly
mounted on both sides of the head near the ears (only one
fisheye is used by each Gopro). This model is more standard
than the first one, but it is also interesting for both VR and
experimenting our method on a roughly planar ground with
a moderated slope. It includes small castles, a church, trees
and medieval porches. The path is chosen before acquisition
thanks to a map, so that it includes several closed loops. Both
day and hour of acquisition are chosen for reducing the num-
ber of tourists in the roads, which are prohibited to most cars.
As in the first model, the weather is chosen so that there is

Name #tri #loc h length slope-length
Basalt 2.9M 3840 1.8m 819m >30%,496m
City 3.4M 3132 1.55m 1.6km >10%,240m

Table 1. Dataset’s characteristics: number of triangles, num-
ber of selected camera locations li, camera-ground distance
(i.e. camera height) h, trajectory length, slope-length (e.g. at
least 10% slope along 240m of the acquisition trajectory).

enough light and the vegetation does not deform.
Tab. 1 shows characteristics of Basalt and City, including

trajectory lengths and slope angles which are estimated thanks
to our 3D coordinate system change. Note that these environ-
ments are not trivial: they are several hundred meters long
with millions of triangles (reconstructed using [12] and [13])
and non-negligible slope angles. Fig. 2 shows global and top
views of reconstructed points and camera trajectories.

(a) City’s points

(b) Basalt’s points and camera trajectory

Fig. 2. Global and top views of the reconstructed points of
City and Basalt. The darker the gray level, the greater the
point density. The trajectory of the acquisition camera is also
shown in black for Basalt.

5.2. Comparisons

We first compare methods that compute the vertical direction
up to its orientation: the PCA method in Sec. 3.1 and the
Hough method in Sec. 3.2. (The former initialises the latter.)

Their estimates are v0 and εv, respectively. The compari-
son is done by orthogonal projections of the reconstructed
cloud of points such that the projection direction is v0 or
εv, and by examining the scene components that have ver-
tical surfaces. These components must be projected into lines
or curves. Fig. 3 shows the projections for Basalt, which is
composed of corridors (or canyons) whose sides are mostly
vertical. The corridor sides are more parallel to the direction

(a) Projection parallel to the PCA direction (v0)

(b) Projection parallel to the Hough direction (εv)

Fig. 3. Top views of reconstructed points of Basalt. The
canyon sides are more parallel to the direction estimated by
the Hough transform than those estimated by PCA.

estimated by the Hough transform than those estimated by
PCA, since new dark curves appear with εv. The comparison
is less easy for City in Fig. 4 because the line segments of v0

and εv look the same. A more careful observation is needed,
e.g. for orthogonal walls (left and bottom) of the main build-
ing in the figure: the line segments are less noisy and darker
for εv than for v0. Furthermore, there are other line segments
(or curves for Basalt) that have a smaller thickness for εv than
for v0. The smaller the thickness, the more accurate the ver-
tical. Thus the conclusion is the same for City and Basalt: εv
is better than v0. The angle between v0 and εv is equal to
18 degrees for Basalt and 4 degrees for City. This explains
why this comparison is easier for Basalt than for City.

Second there is another comparison to show that εv is bet-
ter than v0. In Fig. 5, each image of the City’s 3D model is
drawn by a pinhole camera [9] that has zero pitch and zero roll
angles with respect to a vertical direction of reference among
v0 and εv. Then the vertical lines in 3D are projected to ver-
tical lines in 2D if the direction of reference is accurate. They
are for εv but they are not for v0. (The images can be rotated

(a) Projection parallel to the PCA direction (v0)

(b) Projection parallel to the Hough direction (εv)

Fig. 4. Top views of reconstructed points of City. Walls and
facades are more parallel to the direction estimated by the
Hough transform than those estimated by PCA.

by π to see the sky on the top.)

Fig. 5. City’s views with zero pitch and zero roll. The vertical
lines in 3D are projected to vertical lines in 2D if the reference
vertical direction is εv (bottom). They are not for v0 (top).

Third we discuss the accumulator spaces of Basalt and
City thanks to Fig. 6. We remind that they are used by the
Hough transform to count the votes for the vertical candi-
dates. The dark spots look like uncertainty ellipsoids and sug-
gest that the computation of εv is more reliable in City than
in Basalt. This confirms the observation that the basalt walls
are less vertical than the building walls. The resolution of the
accumulator spaces is a trade-off: not too large due to noise,
not too small for accuracy. Here we use 100 × 100 images
for angle ranges [−π/4,+π/4]2, i.e. there is about 0.9 pixel

Name m−1 σ−1 m+1 σ+1 σ+1/m+1

Basalt 28.2 15.1 5.6 0.99 0.177
City 24.7 11.0 7.71 0.23 0.0298

Table 2. Mean and standard deviations of ground-camera and
ceiling-camera distances in the photogrammetric coordinate
system. The ground-camera distance is m+1.

per degree. We also see that the City accumulator is more
anisotropic than the Basalt one: the former has two slightly
dark strips that are roughly orthogonal. This can be explained
as follow: the roads shown in Fig. 2 have roughly two main
orthogonal directions, then most wall/facade surfaces (which
are parallel or orthogonal to their roads) have two orthogonal
normals whose great circles vote in the strips.

(a) Basalt’s accumulator (b) City’s accumulator

Fig. 6. Accumulator spaces ([−π/4,+π/4]2) of the Hough
transform. The darker the gray level, the greater the vote. We
add white crosses to show εv. The centre of the space is v0.

Fourth we use Tab. 2 to detail the estimations of the ori-
entation and scale in Sec. 3.3. We remind that we distin-
guish the camera-ground and the camera-ceiling distances in
{m−1,m+1} by comparing m−1 and m+1. Since m+1 <
m−1 for both City and Basalt and thanks to the third assump-
tion (Sec. 1), m+1 is the camera-ground distance and the 3D
models will be rescaled such that m+1 becomes equal to h.
We also provide the standard deviation σε associated to mε

for discussion. Since σ+1 < σ−1, σε can replace mε for dis-
tinguishing ground and ceiling. Furthermore, σ+1/m+1 is
smaller for City than for Basalt. Thus the assumption of con-
stant camera height (Sec. 1) is better for City than for Basalt.
This confirms the observation: the people who takes the im-
ages in the City case is always standing, while in the Basalt
case he sometimes walks squatting to pass under obstacles
(e.g. tree branches) or goes down on the buttocks.

Fifth, Figs. 7 and 8 show screenshots taken by a stan-
dalone Oculus Quest during explorations (Sec. 4.2) of Basalt
and City, after our reset of their coordinate systems (Sec. 3.4).
The outward-pointing normal direction is also encoded by

colours: white for vertical toward sky or black toward ground,
red-green-blue for horizontal. The reader can check that the
ground of Basalt is not horizontal thanks to normal colours
and cubes of the trajectory. For City, this can be seen in the
last row thanks to horizontal levels of bricks with different
colours. The setting of the user of VR is (a = +0.3, b = 1,
c = 4) for Basalt and (a = −0.2, b = 4 and c = 10) for City.

VR applications for immersive explorations are available
from http://maxime.lhuillier.free.fr in the sec-
tion “Photogrammetry for VR”.

5.3. Limitations of the method

A surface with a single normal direction, i.e. segment(s) of
parallel planes, votes evenly for all vertical candidates along
a single great circle of the unit sphere. Thus the unoriented
vertical cannot be estimated as the maximiser of these votes.
A piecewise planar reconstructed scene must have at least two
segments of vertical planes with distinct unoriented normals.
In practice, we must avoid a small acquisition trajectory that
only reconstructs a single vertical plane with the ground. We
should also avoid a trajectory limited to a straight road if its
walls and facades are mostly parallel to it.

6. CONCLUSION

This paper estimates the vertical direction and the scale of a
triangulated surface reconstructed by photogrammetry from
terrestrial imagery, with explicit assumptions and limitations.
The method is simple but new: first compute the unoriented
vertical by a principal component analysis of the acquisition
trajectory followed by a 2D Hough transform, then obtain the
oriented vertical direction and the scale by projecting the tra-
jectory onto the surface with respect to the two possible oppo-
site directions. The paper also provides details on the acqui-
sition and visualisation of two immersive VR environments
(obtained by photogrammetry and the proposed method): a
basalt canyon and an urban canyon with trajectory lengths of
about 800m-1.6km. Future work includes comparisons of the
results with those obtained by using other sensors like GPS
and IMU, and the improvement of the travel method to reduce
the cybersickness without sacrificing the spatial awareness.

7. REFERENCES

[1] 3df zephyr. https://www.3dflow.net.

[2] Blender. https://www.blender.org.

[3] Ffmpeg. https://ffmpeg.org.

[4] Meshroom. https://alicevision.org.

[5] Metashape. https://www.agisoft.com.

[6] Unity. https://unity.com.

[7] D. Crandall, A. Owens, N. Snavely, and D. Hutten-
locher. Discrete-continuous optimization for large-scale
structure from motion. In Conference on Computer Vi-
sion and Pattern Recognition. IEEE, 2011.

[8] B. Grayson, N.T. Penna, J.P. Mills, and D.S. Grant. Gps
precise point positioning for uav photogrammetry. The
Photogrammetric Record, 33(164):427–447, 2018.

[9] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision (chapter: 3D reconstruction of cam-
eras and structure). Cambridge University Press, 2000.

[10] B. Klingner, D. Martin, and J. Roseborough. Street
view motion-from-structure-from-motion. In Interna-
tional Conference on Computer Vision. Computer Vi-
sion Foundation, 2013.

[11] M. Lhuillier. Fusion of gps and structure-from-motion
using constrained bundle adjustments. In Conference on
Computer Vision and Pattern Recognition. IEEE, 2011.

[12] M. Lhuillier. Surface reconstruction from a sparse point
cloud by enforcing visibility consistency and topology
constraints. Computer Vision and Image Understanding,
175, 2018.

[13] M. Lhuillier. Local-convexity reinforcement for scene
reconstruction from sparse point clouds. In Interna-
tional Conference on 3D immersion, 2019.

[14] J. Michot, A. Bartoli, and F. Gaspard. Bi-objective bun-
dle adjustment with application to multi-sensor slam. In
International Symposium on 3D Data Processing, Visu-
alization, and Transmission, 2010.

[15] D. Newman and D. Stimm. This is gopro max: Tech,
specs + more, 2019. https://gopro.com/en/us/news/max-
tech-specs-stitching-resolution.

[16] T. Rabbani and F. Van Den Heuvel. Efficient hough
transform for automatic detection of cylinders in point
clouds. In Laser Scanning. ISPRS, 2005.

[17] N. Tian, R. Clement, P. Lopes, and Boulic R. On the
effect of the vertical axis alignment on cybersicknes and
game experience in a supine posture. In IEEE Confer-
ence on Games. IEEE, 2020.

[18] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W.
Fitzgibbon. Bundle adjustment - a modern synthesis.
In Vision Algorithms: Theory and Practice, pages 298–
372. Springer-Verlag, 1999.

[19] T. Weissker, A. Kunert, B. Frohlich, and A. Kulik. Spa-
tial updating and simulator sickness during steering and
jumping in immersive virtual environments. In IEEE
Conference on Virtual Reality and 3D User Interfaces.
IEEE, 2018.

http://maxime.lhuillier.free.fr

Fig. 7. Basalt’s screenshots by a standalone Oculus Quest. Fig. 8. City’s screenshots by a standalone Oculus Quest.

