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Abstract

A new robustdensematding algorithmis introducedin
this paper The algorithm starts from matding the most
textured points,thena matd propagation algorithmis de-
velopedwith the bestfirst strategy to densifythe matdes.
Next, the matcing mapis regularised by using the local
geometricconstaintsencodedy planar affineapplications
andby usingtheglobalgeometricconstiaintencodedythe
fundamentamatrix.

Two mostdistinctivefeatuies are a matc propagation
strategy developedby analagyto region growinganda suc-
cessiveregularisation by local and global geometriccon-
straints. Thealgorithmis efficient,robustandcancopewith
widedisparity. Thealgorithmis demonstatedon manyreal
image pairs and applicationson image interpolation and
creatingnovelviewsare alsopresented.

1 Intr oduction

Matching techniquesare always one of the mostim-
portantand mostdifficult taskin computervision. Dense
matchingconsistsof establishinga maximum number of
pixel-to-pixel correspondencea two images. Therehave
been mary dense matching algorithms developed (e.qg.
[3,7, 2, 1,10, 5, 11]). The mostcommonapproachfor
densematchingconsistsof correlatingsmall image win-
dows along the one dimensionalepipolar line within the
maximum disparity This methodis often computation-
ally costly, suitableonly for small baseline stereaimages,
andalsodependseaily on the epipolargeometrywhich
hasto be provided, often by off-line calibration. Most re-
centlyfrom researchergiorking on uncalibratediision, the
epipolargeometrycould be estimatedon-line with robust

techniqueg14, 13] which toleratesthe initial mismatches.

However, this modernapproachstill fails frequently for
widely separatedmage pairs sincethe initial matchesare
fragile andthefundamentaimatrix soestimatedits oftento

subset®of imagesnot thewholeimage. For instancefor a
clearbackground/forground scenethefundamentaimatrix
oftenfits eitherto the clusterof pointsonthe backgroundr
thaton theforeground.

In this paper we introducea new approachof robust
denseamatchingalgorithm. It startsby constructinga dense
matchingmapusinga growing/propagatiorschem&rom a
list of seedmatchesvhich may containbad matcheqSec-
tion 2). The matchingis then regularisedusing the local
geometricconstraintencodedy planaraffine applications
(Section3). After local regularisationof densematching,
theglobalgeometricconstrainencodedy thefundamental
matrix is recoveredand usedto constraintthe final propa-
gation(Sectior4).

This new approacthasconsiderabladwantage®verthe
existing ones. It cancopewith wide disparitybetweenm-
agepairs. The initial seedmatchesare more tolerantfor
mismatchesaswe do not usethemto fit the global funda-
mental matrix, we useit only for match propagation. In
someextreme cases,only one good seedmatchis suffi-
cientto provokeanavalanchdor thewholetexturedimages
while keepingbadseedsindeseloped.Thealgorithmis also
computationallyefficient. Thefinal fundamentamatrix es-
timation is also reliable as the input matchesare evenly
spreadover the whole imagespace.Finally this algorithm
canstill appliesfor thenon-rigidscendyy droppingthefinal
andglobalvalidation.

2 Initial match and propagation

The basic principles of the algorithmis to start from
matchingsomepoints of interestwhich have the highest
texturenessas seedpoints to bootstrapa region growing
type algorithm, which then propagateshe matchesn the
neighborhoof seedpointsfrom the mosttextured pixels
to lesstextured ones. The algorithm thereforeconsistsof
two steps:seedselectionrandpropagation.



2.1 SeedSelectionand Initial Matching

Pointsof interest[6, 12] are naturally good seedpoint
candidatesas points of interestare by its very definition
imagepointswhich have thehighesttexturenesgi.e. thelo-
cal maximaof the auto-correlatiorfunction of the signal).
The ZNCC (zero-meamormalizedcross-correlationgor-
relationmeasuras usedfor matchingseedssit is invariant
to linear radiometricchanges. The ZNCCx(A) at point
X = (z,y)T with theshift A = (A,,A,)T is definedto be

I +i) = T (x+ A +1) — I'(x + A))
QoI (x+1i) — I(x))? iIx+A+i) — I'(x+ A))2)1/2

wherel (x) andI’(x) arethemeanf pixel luminancegor
thegivenwindow centeredat x.

2.2 Propagation

After obtainingthe initial seedmatches,t comesour
central idea of match propagationfrom the initial seed
matches. The ideais similar to the classicregion grow-
ing methodfor imagesegmentation9] basedon the pixel
homogeneity Insteadof using the homogeneityproperty
a similarity measuréasedon the correlationscoreis used.
This propagatiorstrateyy couldalsobejustifiedasthe seed
matchesarethe pointsof interestwhich arethelocal max-
imaof thetexturenesssothe matchesouldbe extendedo
its neighborawvhich have still strongtexturenesshoughnot
alocalmaxima.

All initial seedmatchesare starting points of concur
rent propagations.At eachstep,a match (a, A) with the
bestZNCC scoreis removed from the currentsetof seed
matchesThenwelook for new matchesn its 'matchneigh-
borhood’(seeFigurel for its definition)andsimultaneously
addall new matchego thecurrentsetof seedsindto theset
of acceptednatches—undearonstruction.Theneighborof
pixelsa and A aretakento beall pixelswithin the5 x 5 win-
dow centeredata and A to enforcethe continuityconstraint
of the matchingresults. For eachneighboringpixel in the
firstimage,we constructlist of tentatve matchcandidates
consistingof all pixels of a 3 x 3 window in the neigh-
borhoodof its correspondindocationin the secondmage.
Thusthe displacemengradientlimit shouldnot exceedl
pixel.

The unicity constraintof the matchingand the termi-
nation of the procesds guaranteedy choosingonly new
matchesotyetacceptedSincethesearctspacds reduced
for eachpixel, we usesmall 5 x 5 windows for ZNCC.
Therefore,minor geometricchangesre allowed and arte-
factsat occludingcontoursarelimited.

We cannoticethattherisk of badpropagatioris greatly
diminishedby the bestfirst stratgyy over all matchedseed
points. Although seedselectionstepseemsvery similar to
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Figure 1. Definition of neighborhood N (a,A)
of pixel match (a, A). It is a set of matc hes in-
cluded in the two 5 x 5-neighborhood Nj(a)
and Nj3(A) of pixels a and A. Possible
matc hes for b (resp. C) are in the 3 x 3 black
frame centered at B (resp. ¢). The complete
definition of N (a, A) is {(b, B),b € N5(a),B €
N5(A)7 (B - A) - (b - a) € {_1707 1}2}

mary existing methodg14, 13] for matchingpointsof in-
terestusingcorrelation the crucial differences that propa-
gationneedsnly to take the mostreliableonesratherthan
takingamaximumof them. Thismakesouralgorithmmuch
lessvulnerableto the presenceof bad seedsin the initial
matches.In someextremecasespnly one good matchof
points of interestis sufficient to provoke an avalancheof
thewholetexturedimages.

This propagatioralgorithmcanbe describedasfollows.
Theinputof thealgorithmis thesetSeed of thecurrentseed
matchesthesetis implementedy a heapdatastructurefor
fastselectionof the bestmatch. The outputis aninjective
displacemeninappingM ap.

Let s(x) = maz{|I(x + A) — IX)|,A €
{(1,0),(-1,0),(0,1),(0,—1)}} be an estimateof the lu-
minanceroughnesdfor the pixel at x, which is usedto
stop propagationinto insufficiently textured areasa with
s(a) < t wheret = 0.01 and0 < I(a) < 1.

Input:  Seed
Output: Map
while Seed # @ do

pull the best match (a,b) from Seed
Local +
(Storein Local new candidatematdes)
for each (¢,d) in  N(a,b) do
if (¢,*) and (x,d) not in Map and

s(c)>t, s(d)>t and ZNCC(¢, d)>0.5
then store match (¢,d) in Local
end-if
end-for

(Store in Seecand Map goodcandidatematdes)
while Local # 0 do
pull the best match (c¢,d) from Local
if (c,*) and (x,d) not in Map
then store match (¢,d) in Map and Seed
end-if
end-while
end-while



Thecompleity of thealgorithmis O(nlog(n)), wheren
isthefinal numberf matchedgixels. Noticethatit is output
sensitve, only dependenbn the numberof final matches
andindependentf disparitybound.

3 Checkusinglocal geometricconstraints

The disparity map obtainedfrom the propagationmay
still be corruptedandirregular. We assumehat the scene
surfaceis smoothenoughto be approximatedy smallpla-
nar patches.Thus, the densematchingcanbe regularised

by locally fitting planarpatchessncodedy homographies.

Theconstructiorof thematchedlanarpatchess described
asfollows.

Thefirstimageis initially subdividedinto smallregular
grid. For eachsquarepatch we obtainall matchedointsof
the squarefrom the densedisparitymap. A planehomog-
raphy shouldbe tentatively fitted to thesematchedpoints
of the squareto look for potentialplanarpatches.Because
a patchis rarely a perfectplanarfacetexceptfor manufic-
turedobjects,the putative homographyfor a patchcannot
beestimatedy standardeastsquare®stimatorsTheRan-
dom SampleConsensu$RANSAC) method[4] is usedfor
robustestimation.

In practice,the stability of the homographyfitting de-
creasesvith the patchsize. Our compromisébetweerpatch
grid resolutionand stability fitting is to fit a planaraffine
application(which countsonly 6 d.o.finsteadof 8 d.o.f of
homography)n 8 x 8-pixel squares.

4 Estimate the global geometricconstraints

So far, only local geometricconstraintsare used for
matching. The global geometricconstraintencodedy the
fundamentaimatrix for the rigid sceneshouldalso be in-
tegrated. The mostpopularstratayy is to recover it at the
very beginning of the sparsematching[14, 13] within a
randomsamplingframeavork. Thereare two ways of in-
tegratingthe globalconstraintfor our approachThefirstis
constrainegbropagatiorwhich consistsn growing matches
if they satisfythe epipolarconstraint,while the secondis
unconstrainegropagation. The advantageof constrained
propagationis that the bad propagationmight be stopped
earlier but the domainof propagationis considerablyre-
duced; Even more seriously the fundamentaimatrix esti-
matedat this stepwith a robust methodoften tend to fit
pointsin a subsetof images. We adoptthereforethe un-
constrainedpropagationand the global constraintis only
imposedy thefollowing constrainegbropagationafterthe
local regularisationwhich giveswidely spreadcorrespond-
ing pointsover thewholeimagerange.

The mostdirect approachto estimatethe fundamental
matrix is from alist of pixel matcheqz,y) obtainedfrom

eachlocal planaraffine applicationA by y = Az wherex
is the middle of the correspondingquare.Thesematches
are evenly spreadin image space(contrarily to interest
points)andthefundamentamatrixis robustly estimatedy
RANSAC from them. The obtainedmatchingconsensus
and fundamentalmatrix are finally improved by applying
the M-Estimatorproposedn [13] andimplementedby an
iteratedre-weightedeastsquarg15].

5 Experimentations

The matching algorithm describedabove is experi-
mentedon mary imagepairs.

Figure 2. Top: initial seed matches. Bottom:
disparity after unconstrained propagation.

5.1 Stability of regiongrowing matching

We first comparethe densematchingmap by different
seedselectiondor thefirst andtwentiethimageof thempey
“flower garden”sequencéour matchinguseonly two im-
agesof the sequence)The pair of “flower garden”images
shavn onthetop row in Figure?2 is very difficult to match
by classicakorrelationor dynamicprogrammingasthedis-
parity is too strongand the ordering constraintalong the
epipolarlinesis obviously violated.

TheseedsreHarrispoints[12] matchedoy 11 x 11 cor-
relation(ZNCC > 0.8) andbidirectionalconsisteng [5].
They aresuperimposedntheoriginal pairasshovnin Fig-
ure 2. Naturally, thereexists still falsematchesmarked by
asquarednsteadof a crossfor goodmatchesThedisparity
mapof densamatchingafterregiongrowingis shovnonthe
bottomof Figure?2. It takes2.5 seconddy an UltraSparc
333MHzfor imagesizeof 360 x 240.

We thenmanuallyselectfour seedmatchedrom thepre-
vious onesandshov themon theleft of Figure3. There-
sulting matchgrowing is display on the right of Figure 3.
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Figure 3. Left: Four manually selected seed
matc hes. Right: the resulting disparity map.

Figure 4. Left: 4 selected seeds and 158 false
matc hes. Right: the resulting disparity map.

Eachseedmatchis sufficient to provoke an avalancheof
correctmatchesn eachof thefour isolatedandtexturedar-
eas. The matchedareascover roughly the samesurfaceas
thatobtainedwith theautomaticseedsn Figure2 and78%
of matchedareasarecommonbetweertwo methods.

To thesemanuallyselectednatches 158 falsematches
with good normalizedcorrelationscore(ZNCC > 0.9)
areadded.Still 70% of thematchedareasarecommonwith
theautomaticseedsn Figure2.

Fromtheabove experimentsye seethatthematchprop-
agationis robustw.r.t. theinitial seedselection.

5.2 Comparing with Image-Matching

We shav the advantageof unconstrainedoropagation
to calculatethe fundamentalmatrix for the previous big
cameramovement,by comparingour resultswith thoseof
Image-Matching[14]. Image-Matchingestimatesa fun-
damentalmatrix F; from leastmediansquareusing seed
matchedy correlationandrelaxation. The default parame-
tersof Image-Matchingareused. In particular its correla-
tion stepis moreconsenativethanoursbecausdig 15 x 15
windows areusedwith the sameZNCC threshold(0.8). It
follows that thereare no seedmatchesin the flowers be-
causdahegeometriaistortionbetweerimagess too strong
(top of Figure5), andtheresulting F; is too badto allow
constrainedporopagationin flowerson the bottomright of
thetrunk (bottomleft of Figure5) in spiteof sub-pixel accu-
ragy for seeds.Our densematchingis only pixel accurag,
but unconstrainegropagatiorfrom the sameseeddills the
full andcommonregionsin thetwo images.It follows that

our resultingfundamentamatrix £}, is betterin theseareas
than F; andit is shovn by allowing constrainedpropaga-
tionseverywhere(bottomright of Figureb).

Figure 5. Top: Image-Matching seed matc hes.
Bottom left:  Fj-constrained propagation.
Bottom right: F,-constrained propagation.

5.3 Applications

We have usedtheresultof our densematchingalgorithm
andfundamentamatrix estimationfor imageinterpolation
[8] (left Figure6 and Figure 8) and surfacereconstruction
(right Figure 6 andFigure 7). In both casesthe rendering
is improved with a meshwhich explicitly modelshalf oc-
cludedareasand gradientedges(automaticbuilding). As
expectedthe precisionof thereconstructiomecreasewith
the depth (Figure 6). In Figure 7, the faceprofile seems
to be correctbut the hairsaredifficult to match. The algo-
rithm parameterarethe samedor all examples exceptfor
thedifferentfacesn Figure8 undersimilarconditions(pro-
videdby [11]): theregionsof interestfor seedmatchesare
reducedo limit badseedsMany exemplesareavailableat
our Webssite http://www.inrialpes.fr/mai/pub/Denos.

6 Conclusionand futur e work

We have presentec new methodof densematchingal-
gorithm. The main contributions are twofold. A match
region growing techniqueinspiredfrom the region grow-
ing for image seggmentationallows to matchimportantar
easacrosstwo images. Both local and global geometric
constraintsareintegrated.Unlike the existing methodsthe
global constraintis recoseredand usedafterlocal regular
isation. The methodhasbeenexperimentedon mary real
imagepairsincludingwide disparityandthe applicationfor
image interpolationand novel view synthesisis corvinc-
ing. Actually we areinvestigatingdifferentmultiresolution



stratgjies,smoothnessonstraintgor propagationandalso
work on multiplesimages.

Figure 6. Interpolation
struction for the “flo wer garden

and surface recon-
™ image pair.

Figure 7. Herve image pair and the recon-
structed surface .
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