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Abstract

We describe a new method for Structure From Motion
from three affine views. The central idea of the method is
to explore the intrinsic three-view properties instead of pre-
vious two-view ones. The first key observation is that an
affine camera is indeed essentially a one-dimensional pro-
jective camera operating on the plane at infinity : we prove
that the essential motion—relative camera orientations—is
entirely encoded by the infinity 1D trifocal tensor. From
a practical point of view, this analysis allows the develop-
ment of two new algorithms of SFM from three views. One
based on entirely the minimal trifocal tensor and another on
affine three-view constraints. Both algorithms are novel as
all previous SFM from three views have been heavily based
on only two-view constraint to extract Euclidean structure.
These algorithms have been demonstrated on real image se-
quences.

1. Introduction

Motion/structure from orthographic or weak perspective
views is a very old and popular topic. It is well known
that at least 4 non-planar points over 3 orthographic or
weak perspective views are sufficient to uniquely determine
motion/structure up to a reflection about the image plane
[21, 7, 9, 16]. Many algorithms have been published for
this problem: the linear methods of Huang and Lee [7, 10],
non-linear algebraic methods of Koenderink and Van Doorn
[9, 2] and non-linear numerical method of Shapiro et al.
[14]. A good review of the different methods can be found
in [14]. The main drawback of existing methods is that they
are essentially based only on two-view constraints. Very
recently, multiple affine-view constraints have been inten-
sively studied ([13, 8, 1, 19, 3]) the method proposed in [13]
combined both 3-view and 2-view constraints. However
no method exists for SFM from only three-view constraints
probably due to the complicated relationship between eu-
clidean motion parameters and 3-view constraints.

The central idea of this paper is to fully exploit the three-
view constraints as they encode much richer motion infor-

mation as the two-view constraints do. The first key obser-
vation is that an affine camera is indeed essentially a one-
dimensional projective camera operating on the plane at in-
finity, as 1D projective cameras are encoded by the 1D trifo-
cal tensor, we show that the essential motion is encoded by
the infinity 1D trifocal tensor. Different algorithms are also
proposed to determine motion parameters from the trifocal
tensor. From a practical point of view, this analysis allows
the development of two new algorithms of SFM from three
views. One based on the minimal trifocal tensor and another
on redundant affine three-view constraints. Both algorithms
are novel as all previous SFM from three views have been
based on only 2-view constraint to extract euclidean struc-
ture. These algorithms have been demonstrated on real im-
age sequences.

The paper is organized as follows. In Section 2, we re-
view the affine camera and the 1D projective camera models
and discuss their relationship. Then, we describe how to de-
termine motion parameters from the infinity trifocal tensor
in Section 3. The computation of the infinity trifocal tensor
is presented and discussed in Section 4. A short conclusion
and future perspectives are given in Section 5.

2. 2D Affine and 1D Projective Cameras

Notation Throughout the paper, vectors are denoted in
lower case boldface x, u . . . , matrices and tensors in up-
per case boldface A, T . . . (sometimes, matrix dimensions
are made clearer with subscripts like A � � � ); Scalars are any
plain letters or lower case Greek � , � , � , � . . . . The geomet-
ric objects are sometimes denoted by plain or Greek letters
like 	 for a 2D line and 
 for a 3D line whenever it is neces-
sary to distinguish the geometric object 	 from its coordinate
representation by a vector l. Covariant indices are written
as subscripts and contravariant indices as superscripts. e.g.
the coordinates of a point x in � � are written with an up-
per index x � � � � � � � � � � � � � � � . The implicit summation
convention is also adopted: Any index repeated as subscript
and superscript in a term involving vectors, matrices and
tensors implies a summation over the range of index values.
e.g. the ! th coordinate of the matrix product Ax is �

�� �
�
.

2D affine camera The affine camera first introduced by
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Mundy and Zisserman [11] is the uncalibrated version of
orthographic, weak-perspective and para-perspective pro-
jection models. It also describes a common degeneracy of
the projective camera either when the viewing field is nar-
row or the scene is shallow compared to the average dis-
tance from the camera. Its broad usage not only lies in its
algebraic simplicity, it is unavoidable for better numerical
stability as it prevents the algorithms from their inherent ill-
conditioning.

The key property is that parallelism is preserved by the
affine camera A � � � so that the plane at infinity has been
identified and the points at infinity are projected into points
at infinity. The principal plane is sent to be confused with
the plane at infinity, this is equivalent to having the third
row of the projective camera matrix fixed as � " � " � " � & � if
the plane at infinity is identified as � � � " :

A � � � � *
M � � �
0 � � � t � � �& + .

Finite points x � � x - � & � � are projected onto finite im-
age points u � � u - � & � � as u - � M � � � x - 2 t 4 If we fur-
ther use relative coordinates of the points with respect to a
given reference point (for instance, the centroid of a set of
points), the translation component t is canceled and the pro-
jection equation for finite points in relative coordinates are
therefore 5 u � M � � � 5 x.

This last equation is the basic projection equation for
points in an affine camera when relative coordinates are
used, and will be only denoted as u � M � � � x with always
the implicit assumption that the centroid has been selected
as the reference point throughout the paper.
1D projective camera One-dimensional projective camera
has been first abstracted from the study of the geometry of
lines under affine cameras [12, 5, 18]. It can also be defined
by simple analogy to a 2D projective camera operating on
lower dimensions.

A 1D projective camera projects a point x �� � � � � � � � � � � in � � (projective plane) to a point u �� � � � � � � � in � � (projective line). This projection may be
described by a 7 8 : homogeneous matrix M as � u �
M � � � x 4

We now examine the geometric constraints available for
points seen in multiple views similar to the 2D camera case
[15, 17, 6, 20, 4]. There is a constraint only in the case
of 3 views, as there is no any constraint for 2 views (two
projective lines always intersect in a point in a projective
plane).

Let the three views of the same point x be given as fol-
lows: � u � Mx � � < u < � M < x � � < < u < < � M < < x. These can be
rewritten in matrix form as=>

M u " "
M < " u < "
M < < " " u < <

?@ =AA> xB �B � <B � < <
? CC@ � " 4 (1)

The vector � x � B � � B � < � B � < < � � cannot be zero, soIIIIII M u " "
M < " u < "
M < < " " u < <

IIIIII � " 4 (2)

The expansion of this determinant produces a trifocal con-
straint for the three views J � � L � � � < � � < < L � " , where J � � L
is a 7 8 7 8 7 homogeneous tensor whose componentsJ � � L are : 8 : minors (involving all three views) of theS 8 : joint projection matrix by stacking M, M < and M < < :J � � L � det

=> T U U X
M

U XT Y Y X
M

X Y XT Z Z X
M

X X Z X ?@
, where all indices vary from 1 to 2,

M
�

is the i-th line of M and [ � � � [ � � � " , [ � � � B [ � � � & .

This trifocal tensor encapsulates exactly the information
needed for projective reconstruction in � � . Namely, it is the
unique matching constraint, it minimally parameterizes the
three views and it can be estimated linearly. Contrast this to
the 2D image case in which the multi-linear constraints are
algebraically redundant and the linear estimation is only an
approximation based on over-parameterization.

2D affine camera is a 1D projective camera on the plane
at infinity If we restrict ourself to the plane at infinity on
which the affine camera direction (i.e. the affine camera
center at infinity) lies, indeed a 1D projective camera occurs
naturally. The 1D image line is the intersection of the image
plane with the plane at infinity, i.e. the line at infinity of the
image plane. The points at infinity are projected onto the
points at infinity of the image plane which is now the 1D
image line as affine camera preserves the points at infinity.

C

A

B

the line at infinity of the affine image plane

affine image plane

plane at infinity

affine camera center

Figure 1. The relation between an affine camera and a 1D
projective camera on the plane at infinity: for instance, any
point pair ^ and _ on the affine image plane gives also a
1D image point ` on the line at infinity of the affine image
plane.
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3. SFM from infinity trifocal tensor

As 1D camera is governed by the trifocal tensor as just
described above so does an affine camera, by its infinity
trifocal tensor. The essential motion parameters should be
contained in this trifocal tensor.

3.1. Extraction of epipoles from the trifocal tensor

The viewing directions/centers of the affine cameras are
the centers of the 1D projective cameras on the plane at in-
finity. The 1D images of the camera centers are 1D epipoles.
We first show that the epipoles are not algebraically inde-
pendent, they are implicit in the infinity trifocal tensor.

From the fundamental trilinear constraint of the infinity
trifocal tensor J � � L � � � <

�
� < <

L
� " , dualizing the tensor to

move the first image coordinate to the right side, the trilinear
constraint appears as a transfer equation from the second
and third image coordinates: [ � � X

J � � L � <
�

� < <
L d

� � X
, that is

J �� L � <
�

� < <
L d

� �
(

d
is the equality for all ! up to a scale).

Now take the first camera center as a usual point, then its
images should be respectively 0, e < � and e < < � in the three im-
ages. As all corresponding points satisfy the trilinear con-
straint, so does the triplet of corresponding image points 0,
e < � and e < < � . We have J �� L f < �

� f < <�
L

� " �
.

This matrix equation says that the 7 8 7 matrix J �� L f < �
�

has the vector e < < � as its kernel! The vector e < < � being an
epipole in the third image could not be a zero-vector, so the
matrix J �� L f < �

�
must have rank 1. I.e.

det � J �� L f < �
�

� � " 4 (3)

The expansion of this 7 8 7 determinant ends up as a
quadratic equation in the unknown components of the
epipole e < � .

Proceeding similarly by first dualizing the tensor for it
being transfer equation from the first and second to the
third image J L� � � � � <

� d
� < <

L
, then taking the corresponding

triplet image points e � , e <� and 0 of the third camera center,
we obtain J L� � f �

� f <
�

� � " �
. We make the same observation

that the matrix J L� � f <
�

� has rank one, so that det � J L� � f <
�

� � � " .

As J L� � f <
�

� is a 7 8 7 matrix, the exchange of up and low in-
dices makes no difference on the determinant constraint, so
we have equally, det � J �L � f <

�
� � � " .

Thus, the determinant expansion leads exactly to the
same quadratic equation (3) for both e < � and e <� , so the
unique quadratic equation gives two solutions, one is e < � and
the other is e <� , but the ordering remains undetermined.

Dualizing the tensor and contracting the tensor in differ-
ent manners with the different camera centers, we obtain
similar quadratic equations for all six epipoles. This gives
a constructive proof that indeed all epipoles are contained

in the trifocal tensor and are obtained by solving simple
quadratic equations up to a two-way ambiguity of different
ordering.

As such epipole is defined up to a scale, it counts only for
1 d.o.f., it is natural to see that the 7 d.o.f. tensor conveys
more information than all epipoles, it still has 1 d.o.f. after
removing the 6 d.o.f. for the 6 epipoles.

More practical estimation methods of trifocal tensor and
epipoles in different configurations will be discussed in Sec-
tion 4.

3.2. Determination of 1D camera matrices

Projection matrix gives a convenient and complete rep-
resentation for cameras. The 1D camera matrices could be
determined from the infinity trifocal tensor. This task is
much simplified whence the epipoles have been determined
from the trifocal tensor. Without loss of generality, we can
always take the following normal forms for the 3 projec-
tion matrices M � n I � � � 0 o � M < � n A � � � e < � o � M < < �

n B � � � e < <� o . By noticing that each trifocal tensor compo-
nent is linear in the entries of A and B for known e < � and
e < < � , the estimate of the camera matrices is straightforward.

We can also notice that the camera matrices could not
be determined only from epipoles, i.e. the trifocal tensor’s
extra d.o.f. allows the full determination of projection ma-
trices.

3.3. Metrics of affine camera and the absolute conic:

The metric upgrade of affine structure for affine cam-
eras is easier than projective camera as the plane at infinity
has already been identified so that instead of the absolute
quadric which is a space conic, we need only to determine
a plane conic, i.e. the space conic restricted to the known
plane at infinity. As the projection center of affine cameras
lies on the plane at infinity, the projection of the absolute
conic is now M p q M � in dual coordinates, i.e. 1D dual
absolute conic which is the pair of absolute points (or circu-
lar points) on the line at infinity of the affine image plane.
As the infinity 1D projection center is the viewing direction
of the affine camera, so the line at infinity of the affine im-
age plane which is the intersection of the affine image plane
with the plane at infinity is the polar line of the camera cen-
ter w.r.t. the 2D absolute conic. The pair of absolute lines
are tangent to the 2D absolute conic and touch it at the pair
of circular points of the affine image plane as illustrated in
Figure 2.

Determination of the absolute conic on the s -plane
t Calibrated cameras In 2D Euclidean space, the pair

of ‘circular points’ characterizes the Euclidean struc-
ture of the plane. The known aspect ratio for the affine
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1D image line

1D camera centercircular point

the absolute conic

Dual triangles

Figure 2. The metrics of three affine views on the plane at
infinity: The triangle of 1D camera centers and the triangle
of the 1D image lines are dual as the polar line of the 1D
camera center is the image line w.r.t. the absolute conic.

camera is equivalent to the knowledge of the circu-
lar points on the affine image plane. The dual of the
absolute conic on the plane at infinity could be deter-
mined by observing that the viewing rays of the circu-
lar points of each affine image plane are tangent to the
absolute conic through the camera center.

If we take the dual form of the absolute conic ( p q ),
the viewing lines of the circular points l � c 8 u satisfy
l � p l � " , just like a ‘point’. Therefore p q can be
linearly fitted from the 6 tangent lines.

t Auto-calibration of 2D affine camera If the cameras
are uncalibrated, auto-calibration is also possible.

Now take the internal calibration matrix K � w � � �
d

n x y zz x | o for each affine image,

M � w � � � p q M }� w � � �
d ~

� � � � K � K �� �
where p q is the dual absolute conic on the plane at
infinity and

~
� � � is the line equation of the image of

the absolute point-pair.

The unknown scale factors can also be eliminated by
treating the 7 8 7 symmetric matrices as 3-vectors, for
the constant unknown aspect ratio, the auto-calibration
constraints can be written as

� M � p q M }� � � � �
~

� � � � � � B �
~

� � � � � � � M � p q M }� � � � � "
where ! � � � � � � � & 4 4 4 7 4

Five independent parameters are required to specify
the Euclidean structure from the affine structure: the 5
parameters of the absolute conic on the plane at infin-
ity. Since each image gives 2 independent constraints,
generally 5 images are necessary for the five intrinsic
calibration parameters. For constant unknown aspect
ratio of the moving camera, three images are enough.

Determination of camera orientation parameters:
Transforming the absolute conic to its canonical position
converts all projective quantities into their true Euclidean
counterparts. Euclidean 1D camera centers give the orien-
tation of the affine cameras. Let the eigen-decomposition
of p q be QDQ � , we can take A � QD � � � . Then the pro-
jective transformation A which brings p q back to its true
position I � � � (i.e. p q � AIA � ), converts projective coor-
dinates x into Euclidean A � � x. All other remaining motion
and structure parameters could be straightforwardly deter-
mined from this transformation.

4. From 3 affine views to the � -trifocal tensor

Now we describe how the infinity trifocal tensor could be
estimated from multiple affine-view constraints. These con-
straints have been recently studied in [13, 1, 19, 14] follow-
ing the same spirit for projective cameras [15, 17, 6, 20, 4].
We first briefly summarize the matching constraints for
three affine views, then describe different strategies for ob-
taining the infinity trifocal tensor.

Matching constraints The most straightforward way is
to use line correspondences as line directions naturally sit
on the plane at infinity and satisfy the trilinear constraints
on the plane at infinity [12]. The infinity trifocal tensor
can therefore be linearly estimated from at least 7 line cor-
respondences. All orientation components of the motion
could be computed by extracting the epipoles from the in-
finity trifocal tensor as described in Section 3. The two-
way ambiguity of orientations and the translation compo-
nent could be uniquely fixed by the information provided
by the position of the line features that has not yet been ex-
ploited [1, 12]. Compared with the method presented in [12]
which was based on an explicit parameterization of the pro-
jection matrices by solving a quadratic equation in which
the geometric interpretation was lost, the new method pre-
sented in Section 3 uses the decomposition of the trifocal
tensor into epipoles as the intermediate step, this makes
clear the geometric interpretation of the intrinsic relation-
ship between trifocal tensor and epipoles and the inherent
two-way ambiguity.

Less obvious, but it is still a trivial observation that not
only line directions are governed by the infinity trifocal ten-
sor, but also all point correspondences in relative coordi-
nates as a relative point is bona fide a ‘line segment’ be-
tween the point and the reference point! The advantage of
directly estimating the infinity trifocal tensor using trilinear
constraints is that the parameter set is kept minimal so the
numerical efficiency and consistency are guaranteed, but the
main drawback is that the minimum number of points is five
instead of 4 and there exists two-way ambiguity for extract-
ing epipoles. Needless to say, points and lines mixed up
nicely in this framework.
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We can also use all available matching constraints of
three affine views [13, 8]. Let the three views of the
same point x be given as u � Mx � u < � M < x � u < < �
M < < x. These can be rewritten together in matrix form as�

M u
M

X
u

X
M

X X
u

X X � � x� � � " � where � �� " encodes the (unrecover-

able) global scale factor of the reconstruction. As the vector� x � � � � can not be zero, the rank of the coefficient matrix is
at most 3, so all of its � 8 � minors vanish. Each vanish-
ing � 8 � minor gives one constraint for the corresponding
point. There are � �� � & � � : 2 � 2 � 2 � such minors,
which can be divided into two types:t Three 2-view constraints involving only two views

with two rows from each view, e < � u 2 e � u < � " where

e
� � det � T U U X

M

U X
M

X �
and e < � � det � MT U U X

M

X U X �
.

These are the affine epipolar geometry.t Three sets of four 3-view constraints involving all three
views with two rows from one view and one from each
of the others, for instance, if we choose always two
rows from the first view, we obtainJ � � L u

� B e < < u < � 2 u < < e < � � 0 � � � � J � � L � det

=> T U U X
M

U XT Y Y X
M

X Y XT Z Z X
M

X X Z X ?@ 4
These are in fact uncalibrated version of the transfer
equations over three views [22] that has been exten-
sively used in object recognition.

12- and 20-parameter methods Using three two-view
constraints for SFM has been the bases of almost all ex-
isting methods [7, 14, 16] due to the simple relation be-
tween the components of two-view constraints and the mo-
tion parameters. In [13], 2 two-view constraint and 1 three-
view constraint are put together to form a 9-parameter lin-
ear system. Here we can use only the four three-view con-
straints as three-view constraints convey richer information
than two-view constraints and therefore are preferable. The
four three-view constraints give a 12-parameter linear sys-
tem including the 8 trifocal tensor components J � � L and 4
for the two epipoles e < and e < < . The other four unknown
epipoles could be extracted from J � � L with the same proce-
dure introduced in Section 3. The interesting thing here is
that the two-way ambiguity of the computation of epipoles
is removed thanks to that the two of the six epipoles have
been uniquely determined.

By permuting three images, two other sets of 4 three-
view constraints could be obtained. Obviously these con-
straints are algebraically redundant. Nevertheless, a 20-
parameter linear system could be obtained if we stack all
three sets of 4 three-view constraints and three two-view
constraints together as suggested in [8]. The main advan-
tage is that all epipoles are simultaneously estimated, but
it is a heavy over-parameterization and both efficiency and
consistency of epipoles are difficult to handle.

Experiments The triplet of images on which the exper-
iments have been performed is shown in the top of Fig-
ure 3. Face images give a typical good example of using
affine camera model. About 50 points of interests are de-
tected in each image and finally 29 of them are automati-
cally matched across the three views through a multi-step
robust matching procedure. The epipolar geometry of the
three pairs of images computed using only four three-view
constraints is also displayed on the original images in Fig-
ure 3. Both residual error of point-to-epipolar-line distances
and visual inspection suggest excellent determination of the
relative orientations between views.

Figure 3. Top: a triplet of face images and the affine
epipolar geometries for the three pairs of images computed
from the three-view constraints. Bottom: some views of the
reconstructed VRML model

A dense matching procedure is performed for each pair
of views. The final disparity map for the triplet is obtained
by combining those of the three pairs of images. Following
the calibration method described in Section 3, the circular
points derived from the known aspect ratio of the camera are
used to fit the absolute conic. The eigen-decomposition of
the matrix of the dual absolute conic fixes the metric prop-
erties of both structure and motion. The dense metric 3D
reconstruction is obtained and a VRML has been created.
Some sample views of the VRML file are illustrated in the
bottom of Figure 3. We see that the depth for the major face
parts is well determined from the side views of the face. The
observed non-smooth transition in nose and mouth parts is
due to imprecision of dense matching which has not been
regularized. One of the key computational innovations de-
scribed in this paper is to compute epipoles not from the
direct affine epipolar geometry, but either from the minimal
8-parameter trifocal tensor or the 12-parameter three-view
constraints. The epipoles computed from different methods
are tabulated to compare the accuracy. Table 1 gives the
comparative results between the 20-, 12- and 8-parameter
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epipoles e
�

e
�

e <
�

e <
�

e < <
�

e < <
�

20-param. (0.648,-0.761) (0.999,0.0432) (0.650,0.760) (0.647,-0.762) (0.999,0.0364) (0.642,0.767)
12-param. (0.647,-0.762) (0.999,0.04451) (0.653,0.757) (0.647,-0.762) (0.999,0.0378) (0.645,0.764)
8-param. (0.705, -0.708) (0.866,0.501) (0.564,0.826) (0.704,-0.710) (0.928, 0.372) (0.571, 0.821)

cosine 20-12 1 0.999999 0.999 1 0.999 0.999
cosine 20-8 0.997 0.886 0.994 0.997 0.941 0.996
cosine 8-12 0.997 0.887 0.994 0.997 0.942 0.996

Table 1. Table of the computed epipoles using the 20-, 12- and 8-parameter methods. The three last row show the cosine of the
same epipolar direction obtained by two different methods.

methods. We note the extremely similar numerical behav-
ior of 20- and 12- methods though the 12- method is clearly
more efficient.

The computed epipoles from the 8-parameter method
are still very stable, though the accuracy is gracefully de-
graded w.r.t. the 12- and 20-parameter methods. From
all experiments we have conducted, we observe that the
8-parameter method gives very good results with its min-
imal parameterization. The 12-parameter and 20-parameter
methods behave very similarly and both outperform the
minimal 8-parameter method. As a trade-off between the
efficiency/consistency and the ease of epipole extraction,
the 12-parameter method is definitely the favorite method
while the 8-parameter method is unavoidable for the case
of pure line correspondences and some other minimal data
cases.

5. Conclusion

We have developed a new method for structure from mo-
tion from three affine views. The central idea is to partly
reduce the affine camera to a 1D projective camera on the
plane at infinity. As 1D projective camera is governed by
its trifocal tensor. We demonstrate that the essential motion
parameters—the viewing directions of the affine cameras—
are contained in the infinity trifocal tensor. We then de-
scribed different methods of extracting orientation informa-
tion from the trifocal tensor. This new approach contrasts
greatly with the previous methods of structure from motion
from affine views which have been heavily based on two-
view constraints, and provides new insights on the intrinsic
geometric structure of three affine views. From a computa-
tional point of view, it is worth investigating the benefits of
the constraint nonlinear estimation methods using the ten-
sor/epipole relations as the hard constraints.
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