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Abstract

This paper describes a new vision based method for the
Simultaneous Localization and Mapping of mobile robots.
The only data used is a video input from a moving cali-
brated monocular camera. From the detection and match-
ing of interest points in images at video rate, robust esti-
mates of the camera poses are computed in real-time and a
3D map of the environment is reconstructed. The computed
3D structure is constantly refined thanks to the introduction
of a fast and local bundle adjustment method that makes this
approach particularly accurate and reliable. Actually, this
method can be seen as a new visual tool that may be used in
conjunction with usual systems (GPS, inertia sensors, etc)
in SLAM applications.

1. Introduction
Simultaneous Localization and Mapping (SLAM) is an

essential capability for mobile robots exploring unknown
environments, using very different sensors or sources of
information (Figure 1). Recently, many works were car-
ried out on SLAM, and this paper focus on a vision based
method that only uses data from a moving monocular cam-
era. The robust and automatic estimate of the movement
of a perspective camera (calibrated or not) and observed
points, from a sequence of images have been largely studied
[13, 17, 8, 1, 4, 12, 9, 15]. In Vision community, the prob-
lem is called SFM, for Structure From Motion and is the
subject of many works. Initially, interest points are detected
and matched between successive frames. Then, robust esti-
mates of relative movement are made with random samples,
and a model of the environment is reconstructed in three di-
mensions.

One can note two main types of approaches for SFM al-
gorithms. First, there are off-line methods [13, 17, 4, 12,
9, 15] carrying out a bundle adjustment optimization of the
global geometry. Bundle adjustment [19] is a process which
adjusts iteratively the pose of cameras as well as points po-
sition in order to obtain the minimal reprojection error (due
to the difference between points detected in the images and

the reprojections of 3D points through the cameras). Most
articles refer to Levenberg-Marquardt (LM) to solve the non
linear criterion involved in bundle adjustment, a method
which combines the Gauss-Newton algorithm and the de-
scent of gradient. In that case, a very accurate model is
generated but it is very expensive in terms of computing
time because of the resolution of linear systems (whose size
is proportional to the number of estimated parameters) and
can not be implemented in a real time application. On the
other hand, there are methods without global optimization.
They are really fast but their accuracy is questionable since
errors accumulate in time. Among those works, Nistér [11]
presents a method called “visual odometry”. This method
estimates the movement of a stereo head or a simple camera
in real time from the only visual data: the aim is to guide
robots. Davison [2] proposes a real time camera pose cal-
culation but he assumes that number of landmarks is small
(under about 100 landmarks). This approach best suits to
indoor environments and is not appropriate for long dis-
placements because of algorithmic complexity and growing
uncertainty.
In this paper, we propose a complete method from the ac-
quisition of images with the camera, to an estimate of the
current position and uncertainty, and a 3D map of the en-
vironment. The method takes benefit from bundle adjust-
ment methods accuracy against Kalman filters [2, 16], and
from speed of incremental methods [11, 20, 18]. This has
been possible with the introduction of a fast and local bun-
dle adjustment process which is carried out each time a new
camera is added to the system.The paper is organized as
follows. First, we explain in details our complete method
to compute camera motion and 3D structure from a video
flow. We explain our incremental method with local bundle
adjustment: we propose to only optimize the end of the 3D
structure with a set of parameters restricted to the last cam-
eras and 3D points observed by these cameras. In a second
part, we present experiments and results on real data, and
we compare to GPS ground truth.



Figure 1. Monocular Vision among other sensors. a) An
example of image and points tracks. b) Top view of the real
time localization. We can see 3D reconstructed points and
the ellipsoid of confidence for the current camera pose.

2. Description of the incremental algorithm

Let us consider a video sequence acquired with a cam-
era settled on a vehicle moving in an unknown environment.
The goal of this work is to find the position and the orien-
tation in a global reference frame of the camera at several
times � as well as the 3D position of a set of points (viewed
along the scene). We use a monocular camera whose intrin-
sic parameters (including radial distortion) are known and
assumed to be unchanged throughout the sequence.
The algorithm begins with determining a first triplet of im-
ages that will be used to set up the global frame and the
system geometry. After that, a robust pose calculation is
carried out for each frame of the video flow using features
detection and matching. Some of the frames are selected
and become key-frames that are used for 3D points trian-
gulation. The system operates in an incremental way, and
when a new key-frame and 3D points are added, we proceed
to a local bundle adjustment. The output is the current po-
sition of the camera and its uncertainty and the final result
(see Figure 3) is a complete trajectory and the 3D coordi-
nates of points seen in images.

Interest points detection and matching The whole
method is based on the detection and matching of features
points (Figure 1 a.). In each frame, Harris corners [7] are
detected and matched with points detected in last key frame
by computing a Zero Normalized Cross Correlation score in
a region of interest. The pairs with the high-scores are se-
lected to provide a list of corresponding point pairs between
the two images. The step “detection and matching” of the

method has been efficiently implemented using SIMD ex-
tensions of modern processors.

Real-time robust pose estimation The sequence initial-
ization and global coordinate system have been set up using
the 5-points algorithm [10] and a RANSAC [5] approach on
a sub-sample of three frames (among other possibilities).

Now, let us suppose that pose of cameras �� to ����

corresponding to selected key-frames �� to ���� have previ-
ously been calculated in the reference reconstruction frame.
We have also found a set of points whose projections are in
the corresponding images. The goal is to calculate camera
pose � corresponding to the last acquired frame � . For that,
we match � (last acquired frame) and ���� (last selected
key frame) to determine a set of points � whose projections
on the cameras ����� ���� �� are known and whose 3D
coordinates have been computed before. From 3D points
reconstructed from ���� and ����, we use Grunert’s pose
estimation algorithm as described in [6] to compute the lo-
cation of camera �. A RANSAC process gives an initial
estimate of camera� pose which is then refined using a fast
LM optimization stage with only 6 parameters (3 for optical
center position and 3 for orientation). At this stage, the co-
variance matrix of camera � pose is calculated and we are
able to draw an ellipsoid of confidence at 90% (see Figure
1 b.). If ��� is the covariance matrix of camera � pose, the
ellipsoide of confidence is given by ���������� � ����
since ���������� obeys a �� distribution with 3 dof.

Key frames selection and 3D points reconstruction The
motion between two frames must be sufficiently large to ac-
curately compute the 3D positions of matched points. So,
not all the frames of the input are taken into account for the
3D reconstruction, but only a sub-sample of the video. We
select frames relatively far from each other but that have
enough common points. For each frame, the normal way
is to compute the corresponding localization using the last
two key frames. We set up a criterion that indicates if a
new frame must be added as a key frame or not. First, if the
number of matched points with the last key frame ���� is not
sufficient (typically inferior to a fixed level � , � � ���
in experiments), we have to introduce a new key-frame. We
have also to take a new key frame if the the uncertainty of
the calculated position is too high (for example, superior to
the mean inter-distance between two consecutive key posi-
tions). Obviously, it is not the frame for which criterion is
refused that becomes a key frame but the one which imme-
diately precedes. After that, new points (ie. those which are
only observed in ����, ���� and ��) are reconstructed using
a standard triangulation method.

Local bundle adjustment When the last key frame �� is
selected and added to the system, a stage of optimization
is carried out. It is a bundle adjustment or Levenberg-
Marquardt minimization of the cost function 	 ����
� ��



where �� and � � are respectively the cameras parameters
(extrinsic parameters) and 3D points chosen for this stage
�. The idea is to reduce the number of calculated param-
eters in optimizing only the extrinsic parameters of the �
last cameras and taking account of the 2D reprojections in
the 
 (with 
 � �) last frames (see Figure 2). Thus,
�� � ������������ and � � contains all the 3D points pro-
jected on cameras ��. Cost function 	 � is the sum of points
� � reprojection errors in the last frames ������ to ��:
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where ���� � ������ 
����� is the square of Euclidean
distance between ���� , estimated projection of point ��
through the camera �� and the measured corresponding ob-
servation. �� is the projection matrix 	 � � of camera �
composed of �� extrinsic parameters and known intrinsic
parameters.

Thus, � (number of optimized cameras at each stage)
and 
 (number of images taken into account in the repro-
jection function) are the 2 main parameters involved in the
optimization process. We must have 
 � �
� to fix the re-
construction frame and the scale factor at the sequence end,
and we have found that � � 	 or � and � � 
 � �� are
sufficient values in practice.
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Figure 2. Local bundle adjustment when camera �� is
added. Only surrounded points and cameras are optimized.
Nevertheless, we take account of 3D points reprojections in
the � last images.

3. Experiments on real data

We applied our incremental localization and mapping al-
gorithm to a semi-urban scene and to a down-town scene.
Here, the goal is to evaluate the robustness to perturbations
in a complex environment, and the accuracy compared to
ground truth provided by a Real Time Kinematics Differen-
tial GPS (whose precision is about one inch in the horizontal
plane).

Hardware settings In our experiments, the camera was
settled on an experimental vehicle and Image size is ����
	�� ������. We used a standard Linux PC (Pentium 4 at
2.8 GHz, 1Go of RAM memory at 800 MHZ) for the recon-
struction process.

Semi urban scene: comparison with GPS ground truth

� Speed and trajectory length: 
������� at ������
� Video: ���� long at 
�� 	�� (��� 	�����)
� Reconstruction: �� key positions and more than �����

3D points.

This sequence is particularly interesting because of images
contents (people walking in front of the camera, sunshine,
etc...) that does not favor the reconstruction process. More-
over, the environment is more appropriate to a GPS local-
ization because the satellites in the sky are not occulted by
high buildings. It is also interesting because of the trajec-
tory: a turn on the right, two turns on the left and a straight
line.Time measured includes feature detection (�����Har-
ris points per frame), matching, and pose calculation for all
frames. For key frames, treatment time is longer because of
points 3D reconstruction and local bundle adjustment. We
can note that speed results are very interesting with an aver-
age of ���� � for normal frames and ���� � for key frames
(let us notice that time between two frames is ���		 � at 
��
	��). Results are reported in table 1.

Frames Max Time Mean Time Total

Non-key frames 0.14 0.09 30.69
Key frames 0.43 0.28 26.29

Table 1. Computation times in �������.

The calculated trajectory obtained with our algorithm
has been compared to data given by a GPS sensor. For
the comparison, we applied a rigid transformation (rotation,
translation and scale factor) to the trajectory as described
in [3] to fit with GPS reference data. Figure 4 shows tra-
jectory registration with GPS reference. As GPS positions
are given in a metric frame we can compare camera lo-
cations and measure 3D positioning error in meters. The
maximum measured error is ��� ������ with a 3D mean
error of �� ����������� and a 2D mean error of less than
	� ����������� in the horizontal plane.

Very long urban scene

� Speed and trajectory length: ���� at � ����
� Video: 	��� �� long at �� 	�� (�
	� 	�����)
� Reconstruction: ��� key positions and �����	 3D

points.

In Figure 5, we can see some frames from the video, a clas-
sical map of the down-town, and the 3D map resulting from



Figure 3. 2 frames from real data experiments and a
top view of the reconstructed scene and trajectory (# 4.000
points and 94 key positions).

Figure 4. Registration with GPS reference, top: in hori-
zontal plane, bottom: on altitude axis. Continuous line rep-
resents GPS trajectory and points represent estimated key
positions. Coordinates are expressed in ��	�
�.

our 3D reconstruction and localization method. The video
has been acquired in real urban conditions and the trajectory

is nearly a loop; it is not a complete loop because of tech-
nical reasons. One can visually ensure that reconstruction
is not much deformed and drift is very low compared to the
covered distance. That shows that our algorithm, very ap-
propriate to long scene reconstruction in term of computing
time is also quite precise and robust. The estimated mean
3D position error compared to results obtained with a clas-
sical global bundle adjustment method is less than 	����.

Figure 5. The long urban sequence a) left: some frames
from the sequence, b) right: a map of the city with the
trajectory in blue, the reconstruction result (trajectory and
18.403 3D points).

Indoor sequences Here, we present 3D reconstruction
and trajectory results obtained for 2 indoor sequences. The
first one has been acquired with a camera settled on a trav-
eling tripod. The trajectory is a complete loop and the start
point is the same as the final point. For the second sequence,
the camera was freely handled.

4. Conclusion
We presented a fast and accurate method to estimate a

vehicle motion using a calibrated monocular camera. The



Figure 6. The 2 indoor reconstructions. a)top: some
frames from the camera, b)middle: the complete loop, c)the
freely handled camera sequence. The line represents the
trajectory and points are 3D reconstructed points.

method also gives a 3D reconstruction of the environment,
and the model is built with 3D points reconstructed from in-
terest points extracted in images and matched at video rate.
Results are very encouraging in term of accuracy.We plan
to apply the method to an “automatic convoy of vehicles”.
The first vehicle is guided manually and makes a 3D map
of the scene. It sends data to others vehicles that are able
to navigate autonomously, and take the same path. More

generally, the method can be adapted to many applications
in robotics and many other fields where a 3D localization is
needed.
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