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Abstract

The automatic surface reconstruction from an im-

age sequence is still an active research topic. Recently,

a method was designed to reconstruct a 2-manifold

surface from the sparse cloud of points generated by

Structure-from-Motion (SfM). This method reconstructs

outdoor scenes from hundreds of catadioptric images.

It is based on sculpting the 3d Delaunay triangulation

of the points by ray-tracing. Our paper improves the

resulting surface by removing spurious handles, which

occur frequently.

1 Introduction

Recently, a method [11] was designed to reconstruct

a 2-manifold from the sparse cloud of points gener-

ated by SfM. This method is interesting for two rea-

sons. First, a surface directly estimated from the SfM

result would be ideal for both time and space complex-

ities since a dense stereo step is not used. Second, a

2-manifold would be useful for initializing a more ac-

curate (but more costly) surface reconstruction such as

surface deformation optimizing photo-consistency.

Every point in a 2-manifold (i.e. 2d topological man-

ifold surface) has a surface neighborhood which has the

disk topology. The genus of a 2-manifold is the num-

ber of its handles, e.g. a sphere has genus 0 and a torus

has genus 1. Since our 2-manifold is triangulated, each

triangle is exactly connected by its 3 edges to 3 other tri-

angles, the surface has neither hole nor self-intersection,

and it cuts R3 into free-space and matter regions.

The method in [11] was discussed with others which

work with the same input: a sparse cloud P of SfM

points. Most of these methods have the following steps.

First, the 3d Delaunay triangulation T of P is build [2]:

T partitions the convex hull of P , and the circumsphere

of every tetrahedron in T does not contain any vertex

of T within it. Second, all tetrahedra in T are labeled

either free-space or matter with the help of the rays pro-

vided by SfM. A ray is a line segment connecting a 3d

point to a viewpoint used to reconstruct the point. A

tetrahedron is free-space if it is intersected by a ray,

otherwise it is matter. Third, the labeling is used to

generate the surface. Several methods [9, 8, 5] directly

consider the target surface as the list of triangles sep-

arating the free-space and matter. Unfortunately, the

resulting surface can be non-manifold. In [4] ([11], re-

spectively), a 2-manifold is extracted thanks to a region

growing procedure in the list of matter (free-space, re-

spectively) tetrahedra.

However, spurious handles could exist on the 2-

manifold (they are called “arks” in [11]). Fig. 1 shows

an example: the oblique handle on the left connects a

small wall to the ground. This handle does not exist on

the true scene surface and it should be removed. Spuri-

ous handles also occur in other contexts [3].

Figure 1. Spurious handle and its removal

Previous methods [10, 12] remove the spurious han-

dles of 3d models. They don’t use the visibility data

(free-space or matter) and remove handles assuming

that (1) the spurious handles are small and (2) the han-

dles in the real world are large. Here we would like to

remove the most visually critical spurious handles (they

can be large) and we detect them thanks to the visibility.

The paper summarizes the scene modelling algo-

rithm (Sec. 2), describes our spurious handle removal

method (Sec. 3) and gives the experiments (Sec. 4).





angle v̂lckvr is greater than a threshold α, we say that

ei is visually critical. By doing so, the list of all critical

handle edges ei are detected. Let Ti be the list of the

tetrahedra having ei as edge. Now we would like to

insert in the outside region the tetrahedra in Ti.

3.3 Insertion of the Steiner Points

This step adds a Steiner point at the middle of every

critical handle edge ei to change the adjacency graph of

the tetrahedra at the spurious handles. Such an “edge

splitting” improves the results of our handle removal

method. However, an edge splitting modifies the De-

launay triangulation: old tetrahedra are destroyed and

new tetrahedra are created. The manifold property of

the outside region may be lost due to the destruction of

tetrahedra and the states (outside or inside) of the new

tetrahedra should be defined.

Our solution is the following: we maintain the man-

ifold property by adding Steiner points without enforc-

ing the empty circumsphere property of the Delaunay

triangulation. Fig. 2(b) shows an example. When a

point is added on the middle of edge ei, every tetrahe-

dron in Ti is split into two tetrahedra which share a same

triangle. By assigning the same inside/outside state of

each tetrahedron to both its split tetrahedra, the new tri-

angulated surface between inside and outside tetrahedra

is still a 2-manifold.

3.4 Local Region-Growing

The adding of Steiner points changes the graph

of the tetrahedra and provides new tetrahedra for the

region-growing process. Here we use a local region-

growing approach which is more time consuming than

that in [11], but which is more adapted to the removal

of spurious handles.

For each vertex vi on split critical handle edges, we

define the list of tetrahedra Li incident to vi which are

free-space and inside. Then a first local region-growing

process is applied for the list Li. If the local region-

growing of Li fails, a second local region-growing pro-

cess is tried individually for each tetrahedron of Li. The

pseudo-code is given by Algorithm 1.

Here, the local region-growing process from the seed

list S (S can be a list of tetrahedra Li or only one

tetrahedron ∆) tries to grow the outside region by the

tetrahedra of S and their neighbours. At first, all tetra-

hedra of S are forced to be outside and the number s

of singular vertices due to the enforcement is calcu-

lated. A surface vertex is singular if it has no surface

neighbourhood which is topologically a disk (this can

be checked by considering all surface triangles having

For each vertex vi on the (split) handle edges :
Get the list Li of tetrahedra incident to vi

which are inside and free-space;

bool b=Local region-growing (Li);

if false==b then

For each tetrahedron ∆ ∈ Li :
Local region-growing (∆);

Algorithm 1: Spurious handles removal using local

region-growing

the vertex [2, 11]). Then at each time, a free-space and

inside tetrahedron is picked from the neighbours of the

forced tetrahedra, and it is forced to be outside. This

enforcement is retained only if it decreases s. The local

region-growing stops when no more enforcement can

decrease s. If the final s is 0, then the local region grow-

ing succeeds. Otherwise it fails, and all forced tetrahe-

dra should be re-labeled to be inside. The pseudo-code

is given by Algorithm 2. Now we provides two impor-

tant technical details.

Inputs : seed list S, list O of outside tetrahedra

Outputs: a boolean, list O of outside tetrahedra

// Notation: δO is the border of O (triangle list)

O ← O ∪ S;

Let s be the number of singular vertices of δO;

Create a queue Q of tetrahedra, Q = ∅;
For each tetrahedron ∆ in S :

For each 4-neighbour tetrahedron ∆′ of ∆ :

if ∆′ is inside and free-space then
Q← Q ∪ {∆′};

while Q 6= ∅ do
Pick a tetrahedron ∆ out of Q;

O ← O ∪ {∆};
Let s′ the number of singular vertices of δO;

if s′ < s then
S ← S ∪ {∆};
s = s′;

For each 4-neighbor tetrahed. ∆′ of ∆ :

if ∆′ is inside and free-space then
Q← Q ∪ {∆′};

else
O ← O \ {∆};

if 0 == s then
return true;

O ← O \ S; // failure since 0 < s

return false;
Algorithm 2: Local region-growing

In this algorithm, the most time consuming part is



the calculation of the number s (or s′) of singular ver-

tices in δO; O is the list of outside tetrahedra and δO is

its border (i.e. the list of triangles between outside and

inside tetrahedra). At first glance, s could be computed

by checking if every vertex of δO is singular after ev-

ery O update. However, this is very inefficient. Since

O is incrementally updated by a very small number of

tetrahedra, the neighborhood of a very small number of

vertices of δO (those of the added tetrahedra) are modi-

fied. So we compute the number of singular vertices of

the added tetrahedra before and after the O update. We

obtain two numbers sbefore and safter and we update s

by s = s + safter − sbefore. At the beginning, s = 0

since δO is a 2-manifold.

Lastly, the algorithm involves a priority queue (heap)

Q of free-space tetrahedra. The tetrahedra are sorted

and selected by using the same priority score as in [11]:

the number of rays which intersects the tetrahedra.

4 Experiment

Experiments are done with a sequence of 208 images

taken by a catadioptric camera around a church (three

images are shown in Fig. 3). The catadioptric camera

is a convex mirror mounted in front of a perspective

camera. The calculations are done using an Intel(R)

Core(TM)2 Duo E8500 @ 3.16GHz. We first give a

sum up of the results of the automatic 3d modelling al-

gorithm without handle removal, then the results of the

handle removal algorithm are presented.

Two 3d models are reconstructed. The first one,

called ChurchS, is obtained by applying the geome-

try and surface estimation algorithms described in Sec-

tion 2. The second one, called ChurchQ, is obtained

from the quasi-dense point cloud obtained by [7] (the

SfM step is the same, the points are the vertices of the

final list of triangles after local model selection and re-

dundancy removal) and then the surface estimation al-

gorithm in Section 2 is applied. For ChurchS (resp.

ChurchQ), 76k (resp. 339k) 3d points are reconstructed

and shown in Fig. 3. Then 59k (resp. 316k) points

are selected in the Delaunay by the angle filter method

in [11] (using ǫ = 5). Lastly, 190k (resp. 1132k) tetra-

hedra are free-space and 86% (resp. 88%) of the free-

space tetrahedra are outside. The 2-manifold has 94k

(resp. 472k) triangles.

Now we apply our handle removal method on both

models. First, 1277 (resp. 1306) critical handle edges

are detected for ChurchS (resp. ChurchQ) using α = 5.

For each edge, a Steiner point is added in the middle of

the edge. Then our local region-growing is applied on

every vertex of the new handle edges. Finally, 9521

(resp. 56628) tetrahedra are added to the outside re-

Figure 3. Three images of the sequence

(top), sparse (bottom-left) and quasi-

dense (bottom-right) clouds of points.

gion. This increases the outside/free-space ratio from

86% (resp. 88%) to 91% (resp. 93%). This ratio is a

quality measure of our algorithm, which is 100% in

the ideal case. Fig. 4 shows the results without han-

dle removal, the results of the handle removal in [11]

and the results with our handle removal algorithm. We

see that our handle removal method removes most of

the critical parts of the scene (which are not physically

plausible), and the resulting surface is better than the

2-manifold without handle removal and the results of

handle removal in [11]. Global views of the results with

our handle removal algorithm are shown in Fig. 5. The

computation time for ChurchS (resp. ChurchQ) is about

20s (resp. 97s), including 3s (resp. 8.5s) as our handle

removal time.

In other experiments, our handle removal method is

tested without adding Steiner points to check if these

points are useful. We observe that few tetrahedra are

added to the outside regions so that many spurious han-

dles are not removed. Thus we can see that adding

Steiner points is not optional to change the adjacency

graph of the tetrahedra at the spurious handles.

Last, our results depend on α: the smaller α is, the

more handles are detected, but the higher the process-

ing time is. In our experiments, we find that if a too

small α (< 5 degrees) is used, the surface quality is not

significantly improved.



Figure 4. Column 1: ChurchS surface.

Columns 2 and 3: ChurchQ surfaces. Row

1: no handle removal. Row 2: the handle

removal in [11]. Rows 3 and 4: the handle

removal of the paper. In rows 1-3, colours

encode the triangle normals.

5 Conclusion

The paper summarizes an automatic scene modelling

system from a sparse SfM point cloud, which generates

a 2-manifold surface by the outside region growing in

the free-space. We explain a drawback of this method

(spurious handles), introduce a post-processing to re-

move these handles, and compare favourably the results

with a previous handle removal method. The idea is

based on the use of Steiner points (which do not destroy

the 2-manifold) and several local region-growing tried

in the spurious handles.

Several improvements could be done in future work.

The image contours could be reconstructed and inte-

grated in the Delaunay to improve the surface. Besides,

the surface smoothing algorithm could be improved to

reduce better the noise of the surface.

Figure 5. Global views of ChurchQ (top)

and ChurchS (bottom).
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