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Abstract— This paper introduces an incremental method for
“Structure From Motion” of complex scenes from a video se-
quence. More precisely, we estimate the 3D positions of the viewed
points in images and the camera positions and orientations
through the sequence. The method can be seen as a fast but
accurate alternative to classical reconstruction methods that use
bundle adjustment, and that can become slow and computation
time expensive for very long scenes. Our results are compared to
the reconstruction obtained by the classical hierarchical bundle
adjustment method. They have also been successfully used as
a reference sequence for the vision based localization of an
autonomous mobile robot.

I. INTRODUCTION

During last years, many works [7], [4] were carried out
on the robust and automatic estimate of the movement of
a perspective camera (calibrated or not) and points of the
observed scene, starting from a sequence of images. It is still
today a very active field of research, and several successful
systems currently exist [12], [1], [11], [8], [14]. Interest points
are initially detected and matched between successive images.
Then, robust methods proceeding by random samples of these
points make possible to calculate the geometry of subse-
quences of 2 and 3 images. Lastly, these “partial” geometries
are merged and the reprojection errors (due to the difference
between points detected in the images and the reprojections
of 3D points through the cameras) are minimized.

This paper deals with the problem of scene reconstruction
from images obtained by a moving calibrated camera. The
reconstruction consists in finding the 3D model of the envi-
ronment, by using only the recorded data. Many applications
(architecture, navigation of robots, etc.) require the use of such
a model. The problem often takes the SFM denomination for
Structure From Motion, which was the subject of many works
in vision.

One can note two types of approaches for SFM algorithms.
First of all, the methods without global optimization of the full
geometry are fast but their accuracy is not very good; errors ac-
cumulate in time. Among those works of Vision-Based SLAM
(Simultaneous Localization and Mapping), Nistér [10] presents
a method called “visual odometry”. It is about the estimate of
the movement starting from the only visual data. This method
estimates the movement of a stereo head or a simple camera
in real time: the aim is to guide robots. Davison [2] proposes
a real time camera pose calculation but he assumes that the
number of landmarks is small (under about 100 landmarks)
which is not appropriate for long displacements. With a really

different approach, we can find algorithms carrying out a
bundle adjustment optimization [17], of the global geometry in
order to obtain a very accurate model. Such an optimization is
computing time expensive and is always carried out in an off
line calculation. Bundle adjustment is a process which adjusts
iteratively the pose of cameras as well as points position in
order to obtain the optimal least squares solution.

Most articles refer to Levenberg-Marquardt (LM) to solve
the non linear criterion involved in bundle adjustment, a
method which combines the Gauss-Newton algorithm and the
descent of gradient. The main problem in bundle adjustment
is that it is very slow, especially for long sequences because it
requires inversion of linear systems whose size is proportional
to the number of estimated parameters (even if one benefits
from the sparse structure of the system).

It is also important to have an initial estimate relatively
close to the real solution. So, it could be an interesting idea
to carry out a bundle adjustment in a hierarchical way [7],
[15] but it does not solve the computing time problem. It is
then necessary to take an alternative method whose purpose
is to decrease the number of parameters to be optimized.
Shum [15] exploits information redundancy in images by using
two virtual key frames to represent a sequence. Steedly [16]
proposes an incremental reconstruction with bundle adjustment
where he readjusts only the parameters which have changed.
Even if this method is faster than a global optimization, it is
not sufficiently efficient and very data dependent. Zhang [18]
presents an incremental method where a local optimization is
done on a triplet of images only.

The goal of our study is to find a fast and reliable method
for the reconstruction of long sequences. First, we present our
incremental bundle adjustment: we propose to only optimize
the end of the 3D structure with a set of parameters restricted
to the last cameras and points observed by these cameras. In
a second part, we evaluate this method and we compare it to
a hierarchical bundle adjustment. Finally, we experiment this
technique and test it on real data for mobile robot localization.

II. RECONSTRUCTION OF COMPLEX SCENES WITH BUNDLE
ADJUSTMENT: AN INCREMENTAL APPROACH

Let us consider a video sequence obtained from a camera
moving in an unknown environment. The goal of the recon-
struction is to find the position and the orientation in a global
reference frame of the camera at several times t as well as the
3D position of a set of points (viewed along the scene). We use



sequence of images acquired by a monocular camera whose
intrinsic parameters are known. A preliminary calibration stage
was carried out to determine the intrinsic parameters of the
camera, and those parameters are assumed to be unchanged
throughout the sequence.

In this study, we compare the incremental method suggested
in the paper to a highly reliable method that makes use of
a hierarchical bundle adjustment. In both cases, the recon-
struction is based on the matching between image pairs. This
matching is carried out from the detection of interest points
(of Harris [6]) in each image. For each interest point in an
image, we select possible corresponding points in an area of
research of the following image. For each possible matching,
we calculate a normalized and centered score of correlation to
retain only the couples with the best score. These points will
be reconstructed in 3 dimensions.

1) Key frames selection: For the reconstruction, we do not
keep all the video frames but only one subsample of images.
Indeed, the movement between two consecutive camera poses
must be sufficiently large to ensure the calculation of the
epipolar geometry. However, one must verify that the move-
ment is not too large to calculate the matching between frames.
The selection of key frames is carried out in an automatic way.
For that, the first image noted I1 is always selected as a key
frame. The second image I2 is selected as far as possible from
I1 in the video but with at least M matched interest points
with I1. Then for n > 1, we choose the key frame In+1

most distant from In so that there are at least M matched
interest points between In+1 and In and at least M ′ matched
points between In+1 and In−1 (in our experiments, we choose
M = 400 and M ′ = 300). Actually, this process ensures to
have a sufficient number of points in correspondence between
two key frames to calculate the movement of the camera.

2) Principle: The sequence has been sub-sampled in time
and we have selected Nseq key frames containing interest
points. Our aim is to estimate the cameras extrinsic parameters
and the points 3D coordinates. It is impossible to compute all
the camera positions parameters first and then to optimize,
because the initial estimate would be too far away from the
real solution and would make bundle adjustment diverge. For
the reconstruction, we should proceed in a sequential way.

3) Hierarchical method: The hierarchical method divides
a long sequence into several subsequences of three images.
For each subsequence, the last two frames correspond to the
first two images of the following subsequence. For the first
three key frames, we calculate the camera’s movement by
calculating the essential matrix [9]. Then, for each triplet,
the camera motion is obtained by a pose calculation. These
computations produce an initial solution which is optimized
by a bundle adjustment. Then, the sub-sequences are merged.
The process is iterated until the whole sequence is obtained
(Figure 1).

In our case, reconstruction is carried out in an incremental
way, in the order of video frames. When adding new elements,
we are confident in the structure obtained previously.
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Fig. 1. Hierarchical reconstruction. Subsequences are optimized and merged.

4) Proposed incremental method: For the first image triplet,
calculation is carried out by the method proposed by Nistér
[9] for 3 images. It provides a solution for the first 3 camera
poses noted C1, C2, and C3, and for the position of points
seen in these 3 images.
Then, the reconstruction extends to the following frames in a
chronological order, and for each new key frame i:

1) We compute the new camera pose with visible points
previously reconstructed.

2) New points are matched and reconstructed in 3D.
3) We apply a local bundle adjustment to refine 3D points

and camera poses.
Stage i: adding camera i

Let us suppose that pose of cameras C1 to Ci−1 have
previously been calculated in the reference reconstruction
frame. We have also found a set of points whose projections
are in the corresponding images. The goal is to calculate
camera pose Ci and the new attached points. For that, we
determine a set of points pi whose projections on the cameras
(Ci−2 Ci−1 Ci) are known by the key frames selection and
whose 3D coordinates have been computed. From Ci−2 and
Ci−1, we use Grunert’s pose estimation algorithm as described
in [5] to compute the location of camera Ci. New points
that are matched only in images i − 2, i − 1, and i are then
reconstructed in the reference frame.

Then comes the stage of bundle adjustment or Levenberg-
Marquardt minimization of the cost function f i(Ci,P i) where
Ci and P i are respectively the cameras parameters (extrinsic
parameters) and 3D points chosen for this stage i. The idea
is to optimize extrinsic parameters of the n last cameras by
taking account of the 2D reprojections in the N (with N ≥ n)
last frames (see Figure 2). Thus, Ci = {Ci−n+1..Ci} and P i

contains 3D points projected on cameras Ci. Cost function f i

is the sum of points P i reprojection errors in the last frames
Ci−N+1 to Ci:

f i(Ci,P i) =
∑

Ci∈{Ci−N+1 ; Ci}

∑

pj∈Pi

(

ε2
ij

)

where ε2
ij = d2(pij , Kipj) is the square of Euclidean distance

between Kipj , estimated projection of point pj through the
camera Ci and the measured corresponding observation. Ki

is the projection matrix 3 × 4 of camera i composed of Ci

extrinsic parameters and known intrinsic parameters.



Thus, n (number of optimized cameras at each stage) and
N (number of images taken into account in the reprojection
function) are the 2 main parameters involved in the optimiza-
tion process. Their given value is directly correlated to the
result quality and execution speed. An important task consists
in determining what good values for n and N to provide a
good accuracy.

It is important to specify that when the reconstruction
process starts, we refine not only the last parameters of the
sequence, but the very whole 3D structure. Thus, for i ≤ Nf ,
we chose to take N = n = i. Nf is the maximum number
of cameras so that optimization at stage i is global (in our
experiments, we choose Nf = 20). That makes it possible
to have reliable initial data, which is significant given the
recursive aspect of the algorithm, and that does not pose
any problem because the parameters number is still relatively
restricted at this time.

N

n

C i

C i−1
C i−2C i−3

C i

Pi

Fig. 2. The ith stage of incremental reconstruction. Only surrounded points
and cameras are optimized. Nevertheless, we take account of 3D points
reprojections in the N last images.

III. METHOD COMPARISONS

A. Complexity of one bundle adjustment iteration
The goal of the proposed method is to accelerate the

reconstruction process while preserving a given accuracy and
reliable data. The Levenberg-Marquardt method is an iterative
and well-known method for its convergence quality, and is
very often used in this kind of problems.

Let P be the set of parameters to be estimated (cameras
orientation + position of their optical center + 3D points
coordinates), X the set of 3D points projections detected
in images and f(P) the projection of 3D points in images
according to the parameters we are looking for. So, the
problem is to minimize the function φ(P) = ||f(P) −X||2.
At stage k of the iterative algorithm, one calculates ∆k such
as Pk+1 = Pk +∆k. ∆k is obtained by solving the equation:
JT J.∆k = JT .εk where J is the Jacobian matrix of f
calculated in Pk and εk = X − f(Pk) (more precisely, the
diagonal terms of matrix JT J are multiplied by a coefficient
in the Levenberg-Marquardt method).

Since we want to deal with long sequences with a lot of
parameters to be evaluated (6 parameters for each camera
and 3 for each 3D point), it is quite naturally appropriate
to exploit characteristics of bundle adjustment applied to the
reconstruction of a set of points [7]: the block structure of
matrix JT J . This matrix is composed of three blocks U , V ,
and W such that U and V are block-diagonal:

V

j

i

W T

U W

Fig. 3. Structure of JT J matrix

• U , matrix made of diagonal 6 × 6 blocks representative
of the dependence between measurements of image i and
associated camera’s parameters.

• V , matrix made of diagonal 3×3 blocks representative of
relations between point j parameters and measurements
associated to it.

• W , matrix translating the intercorrelations between 3D
points parameters and cameras parameters. The structure
of W depends on the fact that many points are not
projected through all the cameras. W has a number
of not-null 6 × 3 blocks equal to the number of 2D
reprojections.

So, the system is
(

U W
W T V

) (

∆cameras

∆points

)

=

(

Ycameras

Ypoints

)

,
and is solved in two steps [7]:

1) Calculation of the increment ∆cameras to be applied to
cameras by resolution of the following system:

(U−WV −1W T )∆cameras = Ycameras−WV −1Ypoints(1)

2) Direct calculation of the increment ∆points to be applied
to 3D points:

∆points = V −1(Ypoints − W T ∆cameras)

Let C and P be the number of cameras and points
optimized in bundle adjustment. Let p be the number
(considered as constant) of projecting points through each
camera.

Once JT J is calculated (Figure 3) (time complexity is
proportional to the number Nr of 2D reprojections taken into
account), the two time computing expensive stages of this
resolution are:

• The matrix product WV −1W T

• The resolution of cameras linear system (1).



For matrix product WV −1W T , the number of necessary
operations can be given by first considering the number of not-
null blocks of WV −1. It is the same number as W , i.e. (p.C),
number of reprojections in C images, because V −1 is block
diagonal. Then, in the product (WV −1)W T , each not-null
6× 3 block of WV −1 is used once in the calculation of each
block column of WV −1W T . Thus the time complexity of the
product WV −1W T is Θ(p.C2). The time complexity of the
traditional resolution of the linear system (1), is Θ(C3) [13].
So, the time complexity of one bundle adjustment iteration is

Θ(Nr + p.C2 + C3).

B. Calculation complexity for incremental reconstruction
Let us remind that the sequence to be reconstructed contains

Nseq images. At each stage i (Nseq time), one adjusts poses
of the n last cameras of a subsequence of N cameras, and
one considers that the number of iterations k is the same one
at each stage. Actually, the algorithm is stopped when the
reprojection error in pixels does not decrease enough, i.e. when
the ratio of error at stage i by the one at stage (i−1) is higher
than a coefficient α. In practice, we choose α = 0.9999 and
experiments have showed that iteration count k did not vary
much. Thus, the resulting time complexity is

Θ
(

k.Nseq(p.n2 + n3)
)

.

It is also necessary to take into account the construction of
matrix JT J whose number of operations is equal to the total
number of reprojections in the N images, i.e. (p.N) Finally,
the complexity time is

Θ
(

k.Nseq(p.N + p.n2 + n3)
)

.

C. Calculation complexity for hierarchical reconstruction
Let us consider only the last stage where bundle adjustment

is applied to the whole sequence on Nseq cameras. The number
Nr of 2D reprojections taken into account, proportional to
the total number (p.Nseq) of reprojections in the sequence, is
negligible in front of p.N2

seq . The number of iterations is noted
k′. Thus, time complexity is

Θ
(

k′(p.N2
seq + N3

seq)
)

.

D. Comparison
The calculation acceleration proposed by our method be-

comes interesting as soon as k.Nseq(p.N + p.n2 + n3) =
o
(

k′(p.N2
seq + N3

seq)
)

when Nseq −→ ∞. For example, if
we have N � Nseq and n2 � Nseq , then our method is
acceptable. This is the case in practice since we have chosen
constant n and N . It is also necessary that the numbers of
iterations k and k′ are equivalent. Actually, we could check
that k′ > k, what favors our method.

IV. EXPERIMENTS

A. Intelligent vehicle localization from a 3D scene recon-
structed by the incremental method

Within the framework of vision based localization of an
autonomous mobile robot (Figure 4), one often uses a 3D

map of the environment in which the robot evolves/moves,
as well as the accurate trajectory it has to follow. This one
is generated from an initial video recording carried out by an
embedded camera and which is used as reference sequence
for the localization. During robot’s navigation, one is able
to determine the current position in the reference frame by
comparing images in memory (attached to the computed 3D
structure) to the current images obtained with the same cam-
era. The reference sequence calculated by a hierarchical bundle
adjustment was replaced successfully in this study by the
reconstruction obtained by our method. Images corresponding
to this experiment are presented on Figure 5.

Fig. 4. Principle of vision based localization. 1) vehicle freely moves and
records a video sequence. 2) trajectory and visual features of the video are
reconstructed. 3) vehicle can localize itself and take the same path.

Fig. 5. 3 frames from ”localization” sequence, with top view of reconstructed
scene. Squares show camera position through the trajectory and points are 3D
reconstructed points.

B. Comparison to hierarchical reconstruction
Figure 6 shows results obtained with a sequence of 93 key

frames acquired with a camera mounted on a vehicle. Some
sequence frames are visible in Figure 7. The real trajectory is
closed. One can then see the ”drift” of the reconstruction when
parameters n (number of optimized cameras) and N (number
of cameras taken into account with each stage) are not well
selected.

Thereafter, we compare our method with the hierarchical
reconstruction for a sequence of 112 key frames. The number
of reconstructed 3D points is approximately 14900 and the
trajectory is about 80 meters length (Figure 8). Many exper-
iments are done for many values of n and N . We evaluate



Fig. 6. Top: incremental reconstruction using n=3, N=3 (RMS=0.839 pixels).
Middle: incremental reconstruction using n=3, N=10 (RMS=0.616 pixels).
Bottom: hierarchical reconstruction (RMS=0.589 pixels).

Fig. 7. 3 frames from ”loop” sequence.

and compare reprojection error, camera location and time
computation.

1) Reprojection error comparison: Global reprojection er-
ror of the estimated 3D points in images is measured by

coefficient RMS =

√

∑

i,j ε2ij

Nr

where Nr is the total number

of reprojections. Results expressed in pixels are listed in table
I. Values go from 0.978 pixels for the ”worst” reconstruction
with 0.602 pixels for the ”best” one with our incremental ap-
proach. Note that RMS measured with hierarchical reconstruc-
tion is 0.589 pixels. Note also that, if we chose a value N not

Fig. 8. Top view of reference reconstruction.

very higher than n, it is not interesting to select a high value for
n. For example, if we take N = n, table I (first column) show
that higher is n, higher is resulting reprojection error. It’s due
to the fact that we do not take enough account of structure’s
anteriority (considered as reliable) during optimization.

P
P

P
Pn
N n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

n=2 0.825 0.764 0.707 0.671 0.649 0.632 0.624 0.616 0.613
n=3 0.839 0.761 0.704 0.668 0.646 0.632 0.620 0.616 0.610
n=4 0.906 0.762 0.703 0.667 0.645 0.629 0.621 0.615 0.608
n=5 0.954 0.768 0.707 0.666 0.646 0.629 0.619 0.611 0.608
n=6 0.957 0.762 0.703 0.666 0.645 0.626 0.616 0.610 0.605
n=7 0.978 0.767 0.703 0.663 0.643 0.626 0.615 0.613 0.607
n=8 0.970 0.760 0.704 0.665 0.641 0.623 0.615 0.608 0.605
n=9 0.966 0.761 0.702 0.666 0.641 0.622 0.617 0.608 0.602
n=10 0.970 0.761 0.702 0.665 0.640 0.624 0.616 0.610 0.603

TABLE I
RMS FOR DIFFERENT n AND N

n n+2 n+4 n+6 n+8 n+1010
8

6
4

2
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n

RMS

N

Fig. 9. 3D visualization of table I. Blue plane indicates RMS resulting from
hierarchical reconstruction.

2) Camera location comparisons: In order to compare,
computed trajectory is readjusted with reference sequence
reconstructed with the hierarchical method. For that, a rigid
transformation (rotation, translation, and scale factor) is ap-



Fig. 10. 2 examples of readjustment with reference hierarchical reconstruc-
tion. a). top n=3, N=3 b). bottom n=3, N=10.

plied, so that they are in the same frame. This approach
is described by Faugeras [3]. Because reference frame is
graduated in meters, one can measure the average cameras

position error (in meters) by

∑

i

√

E2
xi + E2

yi + E2
zi

Nseq

where
Exi, Eyi, Ezi are position errors in directions x, y and
z of camera i compared to the same camera in reference
reconstruction. Results with different values of n and N are
given in table II. We note that average error is lower than 13
cm if N ≥ n + 3 ∀n, and even lower than 11 cm with only 4
exceptions. This is a low relative error given displacements
length. As for Figure 10, it shows first a very deformed
reconstruction where readjustment suits not very well and then
a good reconstruction.

P
P

P
Pn
N n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

n=2 7.966 4.581 0.112 0.085 0.114 0.105 0.075 0.050 0.045
n=3 2.783 0.957 0.200 0.054 0.073 0.093 0.104 0.050 0.035
n=4 1.600 0.637 0.124 0.051 0.055 0.109 0.039 0.044 0.029
n=5 1.157 0.271 0.099 0.064 0.046 0.041 0.069 0.081 0.071
n=6 0.942 0.170 0.112 0.082 0.032 0.074 0.102 0.055 0.073
n=7 0.803 0.088 0.131 0.055 0.036 0.088 0.066 0.071 0.070
n=8 0.754 0.189 0.177 0.127 0.027 0.076 0.063 0.117 0.114
n=9 0.659 0.148 0.057 0.097 0.051 0.026 0.097 0.065 0.093
n=10 0.563 0.085 0.124 0.093 0.028 0.058 0.068 0.037 0.027

TABLE II
MEAN ERROR (IN METERS) OF CAMERA POSITIONS COMPARED TO

REFERENCE SEQUENCE.

3) Computation time comparison: Calculations have been
done on a standard a Linux computer (Pentium 4 at 2.8 GHz,

Fig. 11. 3D visualization of table II representing how varies camera location
error with n and N .

1Go of RAM memory at 800 MHz). Our incremental method
is actually 2-3 times faster than the hierarchical method. That
responds to our waitings, more especially because bundle ad-
justment implementation can still be largely optimized. Results
are reported in table III and are expressed as a percentage
saving of time, compared to traditional reconstruction. During
experiments, the computing times were measured in seconds
and go from 325s to 508s against 919s for the hierarchical
method.

P
P

P
Pn
N n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8

n=2 64.5 63.1 63.6 63.3 62.7 62.5 63.0 62.7 62.8
n=3 64.5 62.0 60.8 61.0 60.4 61.2 61.5 60.8 60.5
n=4 61.0 58.9 58.8 58.9 60.3 58.4 57.7 58.2 59.0
n=5 58.9 57.6 57.0 57.1 56.1 56.4 56.7 57.1 57.4
n=6 56.7 55.4 55.9 54.3 53.9 55.2 54.5 54.7 53.6
n=7 52.6 53.0 52.1 52.1 52.4 52.0 53.2 51.7 51.6
n=8 51.4 50.6 49.4 50.7 49.5 50.0 50.3 49.0 50.4
n=9 49.0 47.5 47.8 47.3 48.9 48.0 46.8 46.6 47.2
n=10 45.4 44.9 44.2 46.1 45.5 44.6 45.6 44.7 47.3

TABLE III
PERCENTAGE OF SAVING TIME.

V. EVOLUTION OF THE METHOD: A STEP TO REAL TIME
MOTION ESTIMATION AND 3D RECONSTRUCTION

In order to get closer to a real time reconstruction (i.e.
the case where reconstruction proceeds in the same time as
computer gets video frames) we have to accelerate the process.
First, our most recent work permits an in-line feature detection
and matching, what is crucial within our purpose.
As for the local bundle adjustment stage, iterations count is
limited to 2×5 iterations. After a first series of iterations (max-
imum 5), computation includes a rejection of ”outliers” i.e. 2D
reprojections whose error is higher than 1.0 pixel. After that, a
new series of iterations is carried out. Parameters n and N are
fixed to 3 and 10. In this context, reconstruction associated to
optimization does not exceed a time of 500ms/key-frame
(and 40ms for the non-key-frames). Thanks to this recent
improvement, we obtain a high quality 3D reconstruction of



very long urban scenes (see Figures 12 and 13) in a very
low computing time. The presented example is a sequence
acquired with a calibrated camera fixed on a car. The distance
covered is more than one kilometer and the video is about
3min long. Calculating the reconstruction has taken 7min20
for 354 key frames and more than 16.000 3D points (image
size is 512 × 384 pixels). Drift is very low compared to the
covered distance.

Fig. 12. ”street” sequence a) top: a city map with the trajectory in blue b).
bottom: reconstruction result (video: 3min, reconstruction: 7min20, 354 key
frames, 16.135 3D points).

Fig. 13. 3 frames from ”street” sequence.

VI. CONCLUSION

We presented a method that greatly accelerates long scenes
3D reconstruction process. Experiments showed that results
obtained are very satisfactory and reliable. We have used our
incremental method instead of the usual hierarchical method
providing a 3D model in a robot’s localization application.

This application was successful, although asking for a real
accuracy. This allowed us to validate the method. Now, we
have two perspectives.

First of all, the results let us think that persevering in the
optimization of the method implementation will make it pos-
sible to approach an accurate 3D reconstruction in real time.
Indeed, for a video flow of 30 fps, a real time reconstruction
based on a key frame every 10 frames takes a computation
time lower than 10 × 33ms (30 fps) = 330ms. According to
our recent experiments, very good results are obtained with a
processing time of less than 500ms/key-frame (and 40ms
for the non-key-frames) what is close to real time. The main
expected improvement is a judicious choice of the number and
distribution of points to reconstruct.

Second, with the aim of very long sequences reconstruction,
it is possible to merge subsequences obtained with our
reconstruction method. With a very similar approach to what
is proposed in this paper, we think it would be possible to
accelerate this fusion process, by reducing the number of
optimized parameters to those which are close to the joint
zone between the two subsequences.
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