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Abstract

Recently, it was suggested that structure-from-
motion be solved using generic tools which are ex-
ploitable for any kind of camera. The same challenge
applies for the automatic reconstruction of 3D models
from image sequences, which includes structure-from-
motion. This article is a new step in this direction.
First, a generic error model is introduced for central
cameras. Second, this error model is systematically
used in the 3D modeling process. The experiments
are carried out in a context which has rarely been
addressed until now: the automatic 3D modeling of
scenes using a catadioptric camera.

1 Introduction

There are two contributions in this article: the intro-
duction of generic covariance and its application to
the automatic 3D modeling of scenes using a cata-
dioptric camera. The former and the latter are re-
spectively summarized (and compared with previous
works) in Sections 1.2 and 1.4. Section 1.1 explains
why generic covariance has been introduced and Sec-

tion 1.3 discusses the choice of a catadioptric camera
for a visualization application. Almost all summa-
rized results in Section 1.2 and a part of those of Sec-
tion 1.4 are new materials over previous conference
versions [19] and [17] of this work.

1.1 Toward Scene Modeling using
Generic Tools

The automatic reconstruction of photo-realistic 3D
models of scenes from image sequences taken by a
moving camera is still a very active field of research.
Once the camera parameters of the image sequence
are recovered by structure-from-motion, dense stereo,
and stereo merge into a single 3D model, are succes-
sively applied. Currently, many 3D modeling sys-
tems exist for perspective cameras [27], catadioptric
cameras [3, 17] and multi-camera rig [7, 2], some-
times with the help of additional information such
as odometry. Even if the intrinsic parameters of the
camera are unknown, the methods involved depend
on a given camera model.

Recently, it was suggested that the first step (SfM
or Structure-from-Motion) be solved using a generic
camera model and generic tools which are exploitable
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for any kind of camera, and the same challenge ap-
plies for the complete 3D modeling process. The
practical advantage is the ability to change one cam-
era model for another (or to mix different cam-
eras). Many generic tools are already available for
structure-from-motion: estimation of the general-
ized essential matrix [26, 21], pose calculation [24],
bundle adjustment [28, 16], generic camera calibra-
tion [10, 14], and even SfM system [23] (without self-
calibration).

Dense stereo is the second step. It is recognized
that this step is very difficult in practice for uncon-
trolled environments. This difficulty increases in the
generic context since the use of the image projection
function is prohibited (this function is specific to the
kind of camera). Furthermore, the global epipolar
constraint is unavailable since the camera may be
non-central: there are no matched curves between
two images such that all 3D points which project on
one curve also project on the other curve. Optical
flow methods [12] may be used since they do not need
the global epipolar constraint. An other method is
suggested in [19]: assume that epipolar constraints
are locally available and apply pair-wise stereo meth-
ods [29] after local rectifications.

The third step is the following: once cameras and
matches between image pairs are known, the 3D
model of the scene is reconstructed using generic
tools. This model is a list of textured triangles in
3D which approximates the visible part of the scene
where the camera has moved. We have to recon-
struct 3D points, approximate them by a mesh, and
deal with matching errors (false negatives and false
positives), depth discontinuities, and a wide range of
accuracies for reconstructed points (due to close fore-
ground and far background, or view-point selection).

Generic covariance is introduced in [19] as a tool
to deal with all items of the third step.

1.2 Generic Covariance for Central
Camera

Virtual covariance of a 3D point is defined for 3D
modeling of scenes using a catadioptric camera [17].
Once camera parameters are estimated by structure-
from-motion, many local 3D models along the image

sequence are reconstructed by dense stereo. Then
virtual covariance is used to select the points of lo-
cal models which are retained in the final and global
model.

Generic covariance of a 3D point is defined for all
central (single view point) cameras to solve the 3D
modeling problem [19]. Since this second covariance
only depends on the 3D point and the successive po-
sitions of the camera, it is highly independent with
regard to the kind of camera. Its use is also extended
to other issues of 3D modeling (hole filling, surface
topology decisions ...).

Note that the original name of generic covariance
in [19] is “virtual covariance”. Here we have modified
it since we think that the new name is more adequate:
generic covariance does not depend on the projection
function. We only assume that the camera is central.

The first theoretical contribution of the current
paper is the definition of generic covariance itself.
Indeed, Section 2 explains why the previous defini-
tion in [19] is naive and how to obtain a thorough
(mathematically sound) definition. The thorough
and naive definitions provide the same final expres-
sion of generic covariance.

In short, the thorough definition for a point p and
several ray origins oi is the following. First, ray di-
rections di corresponding to p and oi are calculated,
and cost function E is defined such that E(x) is a
sum of discrepancies between directions x − oi and
di. Thus, p is the minimizer of E. Then, error mod-
els (random vectors) are defined for di in the unit
sphere. There is a first-order error propagation of
these errors to the minimizer of E, and the generic
covariance of p is defined as the covariance of this
minimizer.

One of the interests of generic covariance is its sim-
plicity. It only depends on p,oi and a scale factor σα.

The second theoretical contribution of the paper is
a list of properties of generic covariance. Section 3
provides the links (1) between unit sphere error and
image error, (2) between virtual covariance [17] and
generic covariance, (3) between σα and ray intersec-
tion problems from image points. In case (2), we
give a simple criterion to check if both covariances
are equal. In case (3), we explain how to estimate
σα. Section 4 provides asymptotic properties of the
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uncertainty derived from generic covariance. Here
we call “uncertainty” the length of the major semi-
axis of the ellipsoid defined by generic covariance and
a given probability. We show that uncertainty of a
point p increases as the square of the distance be-
tween point p and the ray origins {oi}. This is a
generalization for all central cameras of a well known
property for rectified stereo-rig: depth z = Bf

d
has

uncertainty σz = z2

Bf
σd using B=baseline, f=focal

length, d=image disparity and σd=disparity uncer-
tainty.

There is an other asymptotic property observed in
experiments [19] and proven in Section 4. In the two
view case, the ratio of generic uncertainty by distance
between p and {o1,o2} is the inverse of apical angle
(up to a constant scale). The apical angle defined by
a point p and two ray origins o1 and o2 is the angle
between p − o1 and p − o2. There is also a gener-
alization in the multi-view case. The ratio between
our uncertainty and distance is called “reliability”.

This relation between apical angle and generic un-
certainty has consequences on many previous works.
On the one hand, reliability (derived from generic co-
variance) is thresholded in [19] to reject reconstructed
points in 3D models which are considered “unreli-
able”. On the other hand, apical angles are also
thresholded to reject points [6] for the same reason.
A criterion for video sub-sampling (used to stabilize
structure-from-motion) is also based on apical an-
gles [35]. Now we see the link between these methods:
heuristic methods based on apical angles are roughly
equivalent to generic covariance based methods. The
former are two-view based and need recipes for more
than two views. The latter are intrinsically multi-
view.

1.3 Catadioptric Camera for Visual-
ization Application

Our target application is the automatic reconstruc-
tion of photo-realistic 3D models for walkthroughs in
a complex scene. This is a long-term research prob-
lem in Computer Vision and Graphics. A minimal
requirement for interactive walkthrough is the scene
rendering in any view direction around the horizon-

tal plane, when the viewer moves along the ground.
This suggests a wide field of view for the given im-
ages, for which many kinds of camera are possible [5]:
catadioptric cameras, fish-eyes, or systems of multi-
cameras pointing in many directions. Since we would
like to capture any scene where a pedestrian can
go, the hardware involved should be hand-held/head-
held and not cumbersome. A catadioptric camera is
a good candidate for all these constraints.

The main drawback of this choice is the low res-
olution compared with a perspective camera for a
given field of view. We compensate for this problem
using still image sequences taken with an equiangu-
lar catadioptric camera. Still images are preferred to
video images because of their better quality (resolu-
tion, noise). An equiangular camera has also been se-
lected from among other catadioptric cameras, since
it is designed to spread the resolution of view field
well throughout the whole image. Today, such a cata-
dioptric camera can be purchased on the web for a
few hundred Euros using adequate mirrors [1].

These two choices (still images and equiangular
camera) mainly have two consequences. First, a still
image sequence requires some effort and patience:
the user should alternate a step in the scene and a
(non blurred) shot by pressing a button. Second, an
equiangular catadioptric camera is not a central cam-
era. A non-central model complicates involved meth-
ods, since the back-projected rays do not intersect a
single point in space as the perspective model.

This paper shows that the results obtained are
worthwhile with such a setup, and that a central
approximation of equiangular camera is sufficient in
many cases.

1.4 Scene Modeling using Catadiop-
tric Camera

Our 3D modeling methods are essentially generic
for central cameras thanks to the systematic use of
generic covariance. We integrate them in a fully au-
tomatic reconstruction system for catadioptric im-
age sequences and experiment on hundreds of images
without precise calibration knowledge. The overall
system and experiments themselves are practical con-
tributions of this work. Indeed, fully automatic 3D
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modeling from catadioptric images has rarely been
addressed until now (although this is a long-standing
problem for perspective images). All previous cata-
dioptric approaches have been limited to dense re-
construction for a few view points or use accurate
calibration of the camera. Experiments in Section 7
include outdoor scene reconstructions (only indoor
examples are provided in previous works [13, 3, 9]).
Now, the system is summarized.

Structure-from-motion (SfM) is the first step. Al-
though the principles are well known, optimal (in-
cluding global bundle adjustment) and robust SfM
systems are not so common if the only given data
is a long image sequence acquired by a general
catadioptric camera and imprecise knowledge about
the calibration. Previous catadioptric SfM systems
are [33, 22, 18]. The method published in [18] is used
in this work. This method is preferred to the generic
method [23] since it also estimates camera calibra-
tion and it has more successful automatic matching.
Here we use the central camera model with a general
radial function, which is estimated from an approxi-
mate knowledge of the two view field angles provided
by the mirror manufacturer. Details are omitted here
since they have been published before.

Dense stereo is the second step. Catadioptric im-
ages are reprojected on virtual cubes, then dense
stereo is applied on parallel faces such that conju-
gated epipolar lines are parallel. This is a particular
case of the dense stereo generic scheme referenced in
Section 1.1 and [19]. There are at least two reasons
for using virtual cubes [17] instead of virtual cylin-
ders [13, 3, 9] or even the original catadioptric im-
ages. First, a large choice of dense stereo methods
is available [29]. Second, this facilitates the 3D re-
construction of the scene ground by pre-rectification.
Here we do not focus on a specific stereo method.
For convenience, we use the quasi-dense propagation
method [20], but other methods are possible: [13, 3]
use multi-baseline stereo inspired by [25], [9] uses
graph-cut method [15] followed by postprocessings.

The third step is the 3D model generation from
camera poses and image matches using generic co-
variance. Section 5 describes how to obtain a local
(view-centered) 3D model for a few images and dis-
cusses limitations. First, a reference image is seg-

mented by a 2D mesh using gradient edges and color
information. Second, points are reconstructed from
image matches by ray intersection. Third, 2D trian-
gles are back-projected in 3D to fit the reconstructed
points. Generic covariance is useful here to weight
the minimized scores, to define the connections be-
tween triangles in 3D, to fill holes, and to reject un-
reliable triangles. Once many local 3D models have
been reconstructed along the image sequence, generic
covariance is once again used to obtain the final and
global 3D model by view point selection and redun-
dancy reduction (Section 6). Note that view point
selection is a key issue [17]: a 3D point of the scene
may be reconstructed in several local models at very
different accuracies, and local models with the worst
accuracies must not be used to reconstruct this point.

2 Definition of Generic Covari-

ance

This Section provides two generic covariance defini-
tions for central camera. The first one [19] is given
in Section 2.2. Then Section 2.3 explains (1) why
this definition is “naive” and (2) how to obtain a
“thorough” definition. Last, the three steps of the
thorough definition are set out in Sections 2.4, 2.5
and 2.6.

2.1 Notations

Several notations are used throughout the paper. Dif-
ferent fonts are used for reals (eg. 0, 1, a, σ), vec-
tors (eg. b), matrices (eg. C) and functions (eg.
F (x), g(x)). The real vector space of dimension k
is R

k. The identity matrix of dimension k is Ik. Let

k be the vector
(

0 0 1
)T

and 0k be the null vector
of R

k.
The angle between two vectors a,b ∈ R

3 is (a,b) ∈
[0, π] and the cross product is a∧b. The unit sphere
(not ball) of R

3 is S
2. The set of rotations of R

3 is
SO(3). Let π be the function

π(
(

x y z
)T

) =
(

x
z

y
z

)T
. (1)

Notation z ∼ N (z̄, Cz) means that z is a Gaussian
vector which has mean z̄ and covariance Cz.
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2.2 Naive Definition

Let oi ∈ R
3, i ∈ {1, 2, · · · , I} be many ray origins

and a point p ∈ R
3 \ {oi} such that p and {oi} are

not collinear. We introduce directions di ∈ S
2 and

choose rotations Ri ∈ SO(3) such that

di =
p− oi

||p− oi||
and Ridi = k. (2)

Point p is a minimizer of the cost function

E(x) =

I
∑

i=1

||αi(x)||2 with αi(x) = π(Ri(x − oi)) (3)

since E(p) = 0. Using notation z = Ri(x − oi) =
(

x y z
)T

, we have

||π(z)||2 =
x2 + y2

z2
= tan2(k, z) = tan2(di,x − oi). (4)

Thus, E(x) is the sum of squares of tangents of angles
(di,x − oi). Note that p is the unique minimizer of
E since p and {oi} are not collinear.

Let σα > 0. We assume [19] that the angle errors
αi follow independent, isotropic and identical Gaus-
sian errors N (02, σ

2
αI2). Let J be the Jacobian of

the function x 7→
(

αT
1 (x) · · · αT

I (x)
)T

. There is a
first-order error propagation from the αi to the min-
imizer p of E: p follows Gaussian error with covari-
ance matrix

C(p) = σ2
α(J(p)T J(p))−1. (5)

The next step is to calculate C(p). Let Jπ and
Jαi

be the Jacobians of π and αi. The Chain rule
provides

Jαi
(p) = Jπ(||p − oi||k)Ri =

1

||p − oi||
ARi (6)

using A =

(

1 0 0
0 1 0

)

. Thanks to Eqs. 5 and 6,

C−1(p) =
1

σ2
α

J(p)T J(p)

=
1

σ2
α

I
∑

i=1

1

||p − oi||2
R

T
i A

T
ARi

=
1

σ2
α

I
∑

i=1

1

||p− oi||2
R

T
i (I3 − kkT )Ri.(7)

Since R
T
i Ri = I3 and R

T
i k = di, we obtain a simple

expression of the generic covariance matrix:

C(p) = σ2
α(

I
∑

i=1

I3 − did
⊤
i

||p − oi||2
)−1. (8)

Note that E and C(p) do not depend on the Ri choice,
but αi and J do.

2.3 Against the Naive Definition

The first-order error propagation (for Gaussian vec-
tor) is formulated like this [11]. Assume that φ is a
C1 continuous function, Jφ is the Jacobian of φ, and
y ∼ N (y0, Cy). Up to the first order, y propagates
to

φ(y) ∼ N (φ(y0), Cφ) with Cφ = Jφ(y0)CyJT
φ (y0). (9)

In the naive definition, Eq. 5 is obtained by propa-
gation as if there were a function φ which maps value

of
(

αT
1 · · · αT

I

)T
to the minimizer of E. However,

the value of E is fixed by the values of all αi. In
this case, the minimizer of E and φ itself are not well
defined.

A correct use of propagation is the following:

1. Choose an error model for vectors {di,oi}

2. Estimate Jacobian of function φ which maps
model y of (d1,o1, · · · ,dI ,oI) to the minimizer
p of E

3. Define the generic covariance C(p) as the covari-
ance of φ(y) using Eq. 9.

Henceforth, the subject of Section 2 is the devel-
opment of these steps. Section 2.4 presents an error
model choice (step 1) such that Eq. 5 is still correct.
So Eq. 8 is too. The main part is the estimation of
Jφ (step 2) in Section 2.5. Section 2.6 describes the
so-called “first-order error propagation” (step 3).
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2.4 Error Model of Ray Directions di

and Origins oi

An ideal error model d∗
i of di modelizes perturba-

tions of di on the unit sphere S
2 since di ∈ S

2. In
this article, we simplify the problem by using a Gaus-
sian error model d∗

i which approximately modelizes
perturbations on S

2: d∗
i modelizes isotropic pertur-

bations on T , the tangent plane on S
2 at di.

Let {a,b} be an orthonormal basis of T , σα > 0,
ni ∼ N (02, I2) and d∗

i = di + σα

(

a b
)

ni. Then,
propagation from ni to d∗

i implies d∗
i ∼ N (di, Ci)

and

Ci = σ2
α

(

a b
)

I2

(

a b
)T

= σ2
α

(

a b di

)

(I3 − kkT )
(

a b di

)T

= σ2
α(I3 − did

T
i ). (10)

Last we assume that the d∗
i are independent with

the same scale σα and the oi have no errors.

2.5 Estimation of Jacobian Jφ

Let Ri be a C2 continuous function from a neighbor-
hood of di into SO(3) such that

Ri(x)x = ||x||k. (11)

Now we define the cost function

E∗(x) =
I

∑

i=1

||α∗
i (x)||2, α∗

i (x) = π(Ri(d
∗
i )(x − oi)) (12)

and its minimizer p∗. The goal of Section 2.5 is the
estimation of Jacobian Jφ of function φ, which maps
(d∗

1,d
∗
2, · · · ,d∗

I) to p∗.
Note that E∗ is the sum of squares of the tangent of

(d∗
i ,x−oi). Thus E∗ and p∗ do not depend on the Ri

choice, and we have E∗ = E and p∗ = p if ∀i,d∗
i =

di. Furthermore, φ does not depend on error model
of ray origins since this model is not defined in our
case (Section 2.4). Lemma 1 provides the existence
of Ri.

Lemma 1 Assume that a,b ∈ S
2. There is a C2

continuous function x 7→ Rx from the half space {x ∈
R

3,aT x > 0} into SO(3) such that Rxx = ||x||b.

Proof First, assume aTb = 0 and aT x > 0. Thus x

is not parallel to b and x ∧ b 6= 0. Let n = x∧b
||x∧b|| .

Since x and ||x||b have the same norm and are both
orthogonal to n, the rotation Rx defined by axis di-
rection n and angle (x,b) is such that Rxx = ||x||b.
Function x 7→ Rx is C2 continuous since functions
x 7→ (n, (x,b)) and (n, (x,b)) 7→ Rx are C2 continu-
ous.

Second, assume aT b 6= 0. Let R0 be a rotation
such that aT

R0b = 0. We use the previous scheme to
obtain a function R

′

x such that R
′

xx = ||x||R0b with x

in the half space aTx > 0. So function Rx : x 7→ R
T
0 R

′

x

is such that Rxx = ||x||b for all x in the half space
aT x > 0. �Thanks to this Lemma, we know that E∗

is well defined if d∗
i is in the half space Hi = {x ∈

R
3,dT

i x > 0}. The error model of Section 2.4 meets
d∗

i ∈ Hi.
Now, we rewrite Eq. 12 in a different form to sim-

plify the Jφ estimation. Let

d∗
i ∈ Hi,x ∈ R

3 \ {oi},yT =
(

(d∗
1)

T · · · (d∗
I)

T
)

(13)

and F be the function

F (x,y) =
(

α∗
1(x)T · · · α∗

I(x)T
)T

. (14)

We obtain

E∗(x) = ||F (x,y)||2 and φ(y) = argmin
x

E∗(x). (15)

Note that the estimation of Jφ is not the same as
the standard estimation encountered in 3D Vision.
E.g. for bundle adjustment, we should estimate Jφ

such that

φ(y) = argmin
x

||F (x) − y||2 (16)

with x the 3D parameters (cameras poses and scene
points), y the points detected in images, and F the
projection functions. Then we have

Jφ ≈ (
∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T

. (17)

Our case is more general and is solved by Lemma 2.
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Lemma 2 Let F be a C2 continuous function with
full rank Jacobian ∂F

∂x
. There is a C1 continuous func-

tion

φ(y) = argmin
x

||F (x,y)||2 (18)

such that

Jφ ≈ −(
∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T ∂F

∂y
(19)

with derivatives of F taken at (φ(y),y). This approx-
imation is exact equality if F (φ(y),y) = 0.

Proof Lemma 2 is a particular case of Proposition 6.1
in [8], which also asserts that function φ locally exists
and is C1 continuous.

Notations Fk, xi and yj are the k-th, i-th and j-th
coordinates of function F and vectors x and y. The
coefficient at i-th row and j-th column of matrix M is
Mi,j . Second-order partial derivatives of

f(x,y) =
1

2
||F (x,y)||2 (20)

are

∂2f

∂xi∂yj

=
∑

k

{∂Fk

∂xi

∂Fk

∂yj

+
∂2Fk

∂xi∂yj

Fk}. (21)

The Gauss-Newton approximation of this equation is

∂2f

∂xi∂yj

≈
∑

k

∂Fk

∂xi

∂Fk

∂yj

= (
∂F

∂x

T ∂F

∂y
)i,j . (22)

A similar approximation is

∂2f

∂xi∂xi′
≈

∑

k

∂Fk

∂xi

∂Fk

∂xi′
= (

∂F

∂x

T ∂F

∂x
)i,i′ . (23)

These approximations are exact equalities if
F (x,y) = 0. Since φ(y) is minimizer of x 7→ f(x,y),
we have

∀i,
∂f

∂xi

(φ(y),y) = 0. (24)

Using Eqs. 24, 22 and 23, we deduce that ∀i, ∀j,

0 =
∂

∂yj

(y 7→ ∂f

∂xi

(φ(y),y))

=
∂2f

∂xi∂yj

+
∑

i′

(
∂2f

∂xi∂xi′
)
∂φi′

∂yj

≈ (
∂F

∂x

T ∂F

∂y
)i,j +

∑

i′

(
∂F

∂x

T ∂F

∂x
)i,i′ (

∂φ

∂y
)i′,j

≈ (
∂F

∂x

T ∂F

∂y
+ (

∂F

∂x

T ∂F

∂x
)
∂φ

∂y
)i,j . (25)

Thanks to the full rank of ∂F
∂x

, matrix (∂F
∂x

T ∂F
∂x

) is
invertible and we obtain the result. �

Last, the following Lemma explicits ∂F
∂x

and ∂F
∂y

.

Lemma 3 Let yT
0 =

(

d1
T · · · dI

T
)

, Ri = Ri(di)

and assume di = p−oi

||p−oi|| . We have

∂F

∂x
=







A1

...
AI






and

∂F

∂y
=







B1 0 0

0
. . . 0

0 0 BI






(26)

where

Ai =
ARi

||p − oi||
, Bi = −ARi, A =

(

1 0 0
0 1 0

)

. (27)

The derivatives of F are taken at (x,y) = (p,y0).

Proof The block-wise structures of F derivatives re-
sult from the definition of F . First we calculate
∂α∗

i

∂x
at (x,d∗

i ) = (p,di). Thanks to Eq. 11 and

di = p−oi

||p−oi|| ,

Ri(di)(p − oi) = ||p− oi||k. (28)

We also need the Jacobian of π (π is defined in Eq. 1)

Jπ(
(

x y z
)T

) =

(

1
z

0 − x
z2

0 1
z

− y
z2

)

. (29)

Then we apply the Chain rule (as in Eq. 6)

Ai =
∂α∗

i

∂x
(p,di) = Jπ(||p − oi||k)Ri =

ARi

||p − oi||
. (30)

Second we calculate
∂α∗

i

∂d∗

i

at (x,d∗
i ) = (p,di). Using

di = p−oi

||p−oi|| , we have

α∗
i (p) = π(Ri(d

∗
i )(p − oi)) = π(Ri(d

∗
i )di). (31)

7



The Chain rule and Ri(di)di = k provide

∂α∗
i

∂d∗
i

(p,di) = Jπ(k)
∂(Ri(d

∗
i )di)

∂d∗
i

(di)

= A
∂(Ri(x)di)

∂x
(di). (32)

Fortunately, an explicit expression of Ri is not needed

to calculate
∂α∗

i

∂d∗

i

(p,di): we derivate Eq. 11 with re-

spect to parameter a ∈ {x, y, z} of x =
(

x y z
)T

∂(Ri(x))

∂a
x + Ri(x)

∂x

∂a
= k

∂||x||
∂a

(33)

and we obtain at point x = di

∂(Ri(x)di)

∂x
(di) + Ri = kdT

i . (34)

We deduce from Eqs. 32 and 34 that

Bi =
∂α∗

i

∂d∗
i

(p,di) = A(kdT
i − Ri) = −ARi (35)

�

Thanks to Lemma 3, ∂F
∂x

has full rank if p and {oi}
are not collinear. Then Lemma 2 is used: φ locally
exists, it is C1 continuous, and its Jacobian at (p,y0)
is easy to estimate thanks to Eqs. 26 and 27.

2.6 First-Order Error Propagation

The last step of the generic covariance definition is
the use of first-order error propagation (Eq. 9) with
yT =

(

(d∗
1)

T · · · (d∗
I)

T
)

, φ of Section 2.5 and its
Jacobian (Eq. 19):

Cφ = (
∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T ∂F

∂y
Cy

∂F

∂y

T ∂F

∂x
(
∂F

∂x

T ∂F

∂x
)−1. (36)

at (x,y) = (φ(y0),y0) = (p,
(

d1
T · · · dI

T
)T

).
Thanks to the d∗

i definition in Section 2.4, Cy is
a block-wise diagonal matrix with diagonal blocks

equal to Ci. Then Lemma 3 implies that ∂F
∂y

Cy
∂F
∂y

T
is

a block-diagonal matrix and its diagonal blocks are

BiCiB
T
i = σ2

αARi(I3 − did
T
i )RT

i A
T

= σ2
αA(I3 − kkT )AT = σ2

αI2 (37)

if di = p−oi

||p−oi|| . Thus, the generic covariance C(p) is

Cφ = σ2
α(

∂F

∂x

T ∂F

∂x
)−1 = σ2

α(J(p)T J(p))−1. (38)

This result is the same as that of the naive definition.
Observing Eq. 37, we note that alternative errors

d∗
i are possible to obtain the same C(p): conditions

are Ci = σ2
αI3 + λidid

T
i , λi ∈ R (di is symmetry axis

of Ci). The alternative errors include non Gaussian
errors d∗

i ∈ S
2, without the tangent plane approxi-

mation of Section 2.4.

3 Properties of Generic Covari-

ance

First, Section 3.1 investigates how the S
2 error (intro-

duced in Section 2.4) is propagated to image space.
Then Section 3.2 provides a criterion to check if the
generic covariance propagated from S

2 and the co-
variance propagated from image space are the same.
In both cases, the input error is isotropic (in S

2 or
image) and has uniform scale (σα or σp). Last, Sec-
tion 3.3 explains how to estimate σα.

3.1 Image Error and S
2 Error

The error on the unit sphere S
2 propagates to image

error by the projection function of the central camera.
This propagation is described in Lemma 4.

Lemma 4 Let p be the projection function of the
camera, and d ∈ S

2. Assume that p is C1 continuous
with full rank Jacobian Jp. Up to the first order, the
S

2 error

d∗ ∼ N (d, C) with C = σ2
α(I3 − ddT ). (39)

propagates to image error

p(d∗) ∼ N (p(d), Cp) with Cp = σ2
αJp(d)JT

p (d). (40)

Furthermore, the image projection of the circular
cone with infinitesimal aperture 2ǫ radians, apex 0,
and axis d is in the ellipse

{m ∈ R
2, (m − p(d))T (

ǫ2

σ2
α

Cp)
−1(m − p(d)) = 1}. (41)

8



Proof Point zd defined by direction d and z > 0
is such that p(zd) − p(d) = 0 since 0 is the camera
center. Using z and d derivatives of this equation,
we obtain

Jp(zd)d = 0 and zJp(zd) − Jp(d) = 0. (42)

Thus Eq. 39 propagates to p(d∗) ∼ N (p(d), Cp) with

Cp = σ2
αJp(d)(I3 − ddT )JT

p (d) = σ2
αJp(d)JT

p (d). (43)

Now, we use SVD and introduce several notations:

Jp(d) = UDV
T , R =

(

V d
)

, x = R

(

x y z
)T

. (44)

Matrix R is a rotation since d ∈ S
2 and Jp(d)d = 0.

Thus, ǫ2z2 = x2 + y2 iff x is in the circular cone with
apex 0, axis d and aperture 2 arctan(ǫ) ≈ 2ǫ radians.
The linear Taylor expansion of p at d and Eq. 44
imply

p(x) − p(d) = p(
1

z
x) − p(d) ≈ Jp(d)(

1

z
x − d)

≈ Jp(d)R
(

x
z

y
z

0
)T

=
1

z
UD

(

x
y

)

.(45)

Note that Eq. 45 approximation is correct for x in the

cone with small enough ǫ since || 1
z
x−d||2 = x2+y2

z2 =
ǫ2.

Furthermore, D > 0 since Jp has full rank. Now,
the SVD of Jp(d), invertible D, Eqs. 43 and 45 provide

(p(x) − p(d))T (
ǫ2

σ2
α

Cp)
−1(p(x) − p(d))

≈ 1

z2

(

x y
)

DU
T (ǫ2UDVT

VDU
T )−1

UD

(

x y
)T

≈ x2 + y2

z2ǫ2
. (46)

We obtain the last result since ǫ2z2 = x2 + y2 iff x is
in the circular cone. �

Lemma 4 also provides a method to visualize the
covariance matrix Cp of the propagated image error
p(d∗): uncertainty ellipse of image error p(d∗) is dis-
tortion ellipse of projection p centered at p(d). We
must remember that the distortion ellipse (or Tissot’s
indicatrix [34]) of p is the image projection by p of

circular cone with infinitesimal aperture 2ǫ radians,
apex 0 and axis d.

Thus, there is a convenient and visual test to check
if image error p(d∗) is “standard” (isotropic and uni-
form in the whole image): the more ellipses are circles
with the same radius, the more standard the image
error. Note that unavoidable distortions occur by lo-
cal map from sphere into plane.

3.2 Generic and Virtual Covariances
in 3D

On the one hand, the generic covariance C(p) is de-
fined by error propagation from the unit sphere S

2

(Section 2). On the other hand, the virtual covari-
ance Cv(p) is defined by error propagation from the
image [17]. Both are covariances for a 3D point p.
The former (the latter, respectively) assumes that the
error amplitude in S

2 (in the image, respectively) is
uniform. The latter is specific to the projection func-
tion p of the camera. The following Lemma provides
the condition to obtain Cv = C.

Lemma 5 Let p be the projection function of the
camera, R0

i ∈ SO(3), oi ∈ R
3 and

pi(p) = p(R0
i (p − oi)). (47)

Assume that p is C1 continuous. Let Jpi
be the Jaco-

bian of p 7→ pi(p), σp > 0 and

Cv(p) = σ2
p(

I
∑

i=1

JT
pi

(p)Jpi
(p))−1. (48)

The S
2 error is

∀d ∈ S
2,d∗ ∼ N (d, C) with C = σ2

α(I3 − ddT ). (49)

If all p(d∗) have the same covariance σ2
pI2, Cv = C.

Proof According to Lemma 4, p(d∗) ∼ N (p(d), Cp)
with Cp = σ2

αJp(d)JT
p (d). Furthermore, the SVD

Jp(d) = UDV
T and Cp = σ2

pI2 imply

σ2
pI2 = Cp = σ2

αUDV
T
VDU

T ⇒ D =
σp

σα

I2. (50)
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Thus, there are U, V and R =
(

V d
)

such that

Jp(d) =
σp

σα

UV
T and U

T
U = I2, V

Td = 0

and VV
T = R(I3 − kkT )RT = I3 − ddT . (51)

Let di be such that p−oi = ||p−oi||di. Using Chain
Rule, Eqs 42 and 51, the Jacobian of pi at p is

Jpi
(p) = Jp(R

0
i (p − oi))R

0
i =

1

||p− oi||
Jp(R

0
i di)R

0
i

=
1

||p − oi||
σp

σα

UiV
T
i R

0
i (52)

with

U
T
i Ui = I2, ViV

T
i = I3 − R

0
i di(R

0
i di)

T . (53)

Now, Eqs. 48, 52 and 53 imply

C−1
v (p) =

1

σ2
p

I
∑

i=1

JT
pi

(p)Jpi
(p)

=
1

σ2
p

I
∑

i=1

1

||p − oi||2
σ2

p

σ2
α

R
0
i

T
ViU

T
i UiV

T
i R

0
i

=
1

σ2
α

I
∑

i=1

1

||p− oi||2
(I3 − did

T
i )

= C−1(p). (54)

�

Lemma 5 asserts that generic and virtual covari-
ances of a 3D point are the same if the image error is
standard, i.e. if all p(d∗) have the same isotropic co-
variance. Thus, the visual test provided at the end of
Section 3.1 can be used to check if generic and virtual
covariances are the same.

In practice, perspective cameras with moderated
field of view have distortion ellipses which are sim-
ilar to circles with the same radius. According to
Section 3.1, these cameras propagate the S

2 error to
the standard image error. According to Lemma 5,
virtual and generic covariances are similar for per-
spective cameras.

3.3 Ray Intersection from Points in
Images

Assume that we have a ray intersection problem:
there are noisy and matched points in I images such
that camera calibration and camera poses are known,
and the corresponding 3D point p should be recon-
structed. This problem may be solved as follows:

1. Calculate the ray directions di and origins oi

corresponding to image points (in world coordi-
nates).

2. Choose rotations Ri such that Ridi = k and de-
fine the angle cost function E(x) as in Eq. 3.

3. Estimate p as the minimizer of E(x).

Here we can not define a covariance for p using Eq. 38
since it requires di = p−oi

||p−oi|| , which is wrong due to

reconstruction in the presence of image noise. How-
ever, Eq. 36 does not need di = p−oi

||p−oi|| and we use

it to define covariance Cr(p).
Now a 3D point p is reconstructed, we can reset di

using di = p−oi

||p−oi|| and define covariance C(p) using

Eq. 8. Both covariances Cr and C are obtained, the
former comes from points detected in images and the
latter comes from a reconstructed point in space.

Assume that the image noise is low, the mapping
from image point to ray direction is continuous, and
the mapping from ray directions to covariance is con-
tinuous by Eq. 36. Then Cr is approximated by C.
This approximation is done in all our experiments.

Last we present a Lemma which is used in exper-
iments to estimate σα from several ray intersection
problems as defined above.

Lemma 6 The mean (expected value) of random
variable E∗(φ(y)) is

E(E∗(φ(y))) ≈ (2I − 3)σ2
α. (55)

Proof Here we need new notations D(y) =

F (φ(y),y) and P = ∂F
∂x

(∂F
∂x

T ∂F
∂x

)−1 ∂F
∂x

T
. Note that

P
2 = P = P

T . Furthermore, Section 2.5 and Eq. 37
provide several relations which are useful for the cur-
rent proof:

yT
0 =

(

dT
1 · · · dT

I

)
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φ(y0) = p, D(y0) = F (p,y0) = 0

∂F

∂x
Jφ = −P

∂F

∂y
,

∂F

∂y
Cy

∂F

∂y

T

= σ2
αI2I . (56)

Partial derivatives of F are taken at (x,y) = (p,y0).
Now, a linear Taylor expansion of D is

D(y) ≈ D(y0) +
∂D

∂y
(y0).(y − y0)

≈ (
∂F

∂x
(p,y0)Jφ(y0) +

∂F

∂y
(p,y0)).(y − y0)

≈ (I2I − P)
∂F

∂y
(p,y0).(y − y0). (57)

Using first-order error propagation of y ∼ N (y0, Cy),
we have D(y) ∼ N (02I , CD) such that

CD = (I2I − P)
∂F

∂y
Cy

∂F

∂y

T

(I2I − P)T

= σ2
α(I2I − P− P

T + PP
T ) = σ2

α(I2I − P).(58)

Now the expected value of E∗(φ(y)) is

E(E∗(φ(y))) = E(D(y)T D(y))
= E(tr(D(y)D(y)T ))
= tr(E(D(y)D(y)T ))
≈ tr(CD) = 2Iσ2

α − σ2
αtr(P)

= 2Iσ2
α − σ2

αtr((
∂F

∂x

T ∂F

∂x
)−1 ∂F

∂x

T ∂F

∂x
)

= σ2
α(2I − 3). (59)

�

This lemma is used as follows. We reconstruct J
points using the method described at the beginning
of Section 3.3 for a same number of I images. Let Ej

be the final value of the minimized score of the j-th
point. Thanks to Eq. 55, we estimate σα using

(2I − 3)σ2
α ≈ E(E∗(φ(y))) ≈ 1

J

J
∑

j=1

Ej . (60)

4 Properties of Generic Uncer-

tainty

Generic uncertainty U(p) is the length of the major
semi-axis of the uncertainty ellipsoid defined by the

generic covariance (C(p) in Section 2) and a proba-
bility p ∈]0, 1[. Let X 2

3 (p) be the quantile function of
the X 2 distribution with 3 d.o.f. The ellipsoid is

{x ∈ R
3, (x − p)T C−1(p)(x − p) ≤ X 2

3 (p)}. (61)

We use notation e(p) for the smallest singular value
of C−1(p) and obtain

U(p) =

√

X 2
3 (p)

e(p)
. (62)

We also define reliability [19]

R(p) =
U(p)

mini∈{1,··· ,I} ||p− oi||
(63)

The topic of this Section is the study of asymptotic
properties of U(p) and R(p). By “asymptotic”, we
mean that p should be far enough from the ray origins
{oi}.

These properties rely on the main result in Sec-
tion 4.1, which expresses e(p) as a function of a point
in the convex hull CH of {oi}. Section 4.2 provides
the link between apical angles and R, and confirms
that R(p) increases linearly as the distance between
p and the ray origins {oi}. Thus, U(p) increases
quadratically.

4.1 Link Between e(p) and the Convex
Hull of {oi}

First, we need a Lemma whose assumptions are sat-
isfied if point p is far enough from {oi}. The proof
is very technical and may be skipped by the reader.

Lemma 7 Let p ∈ R
3 such that

∃d0 ∈ S
2, ∀i ∈ {1..I},di =

p− oi

||p− oi||
,dT

0 di ≥
√

3

2
. (64)

Let function G be

G : d ∈ S
2 7→

I
∑

i=1

wi(d
T
i d)2 with wi > 0. (65)

There is a maximizer d of G such that ∀i,dT
i d ≥ 0.
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Proof Since (a,b) is the minimal path length be-
tween a and b on S

2, we can use properties (a,b) ∈
[0, π], π = (a,b) + (−a,b), (a, c) ≤ (a,b) + (b, c)

and (a,b) = (−a,−b). Furthermore, dT
0 di ≥

√
3

2
and (d0,di) ≤ π

6 are equivalent.
Let d ∈ S

2 such that π
3 < (d0,d). We have

(d0,d) ≤ (d0,di) + (di,d)

⇒ π

6
=

π

3
− π

6
< (d0,d) − (d0,di) ≤ (di,d).(66)

Let d ∈ S
2 such that π

3 < (−d0,d). We have

(−d0,d) ≤ (−d0,−di) + (−di,d)

⇒ π

6
=

π

3
− π

6
< (−d0,d) − (−d0,−di) ≤ (−di,d)

⇒ (di,d) = π − (−di,d) < π − π

6
=

5π

6
. (67)

Let d ∈ S
2. Thanks to Eqs. 66 and 67, we have

π

3
< (d0,d) and

π

3
< (−d0,d)

⇒ π

6
< (di,d) <

5π

6
⇒ |dT

i d| <

√
3

2

⇒ G(d) =
I

∑

i=1

wi(d
T
i d)2 <

3

2

I
∑

i=1

wi. (68)

However, dT
0 di ≥

√
3

2 and Eq. 68 imply

G(d0) =

I
∑

i=1

wi(d
T
i d0)

2 ≥ 3

2

I
∑

i=1

wi > G(d). (69)

Now, we see that all d ∈ S
2 such that π

3 < (d0,d)
and π

3 < (−d0,d) are not maximizers of G.
Let d be a maximizer of G (d is a singular vector of

∑I

i=1 widid
T
i ). We have (d0,d) ≤ π

3 or (−d0,d) ≤
π
3 . If (−d0,d) ≤ π

3 , −d is also a maximizer of G such
that (d0,−d) = (−d0,d) ≤ π

3 . Thus, there is always
a maximizer d of G such that (d0,d) ≤ π

3 .
Last,

(d,di) ≤ (d,d0) + (d0,di) ≤
π

3
+

π

6
=

π

2
. (70)

This d is a maximizer of G such that ∀i,dT
i d ≥ 0. �

Here is the core of the asymptotic properties: the
smallest singular value e(p) of C−1(p) is a function
of a point in the convex hull of the ray origins {oi}.

Theorem 1 Let p ∈ R
3 such that

∃d0 ∈ S
2, ∀i ∈ {1..I},di =

p− oi

||p− oi||
,dT

0 di ≥
√

3

2
. (71)

Let e(p) be the smallest singular value of C−1(p) and

e(m,p) =
1

σ2
α

I
∑

i=1

1

||p − oi||2
(1 − (dT

i

p − m

||p − m|| )
2). (72)

There is o(p) in the convex hull CH of {oi} such that

e(p) = min
m∈CH

e(m,p) = e(o(p),p). (73)

Proof Thanks to the definition of e(p) and the ex-
pression of C(p) in Eq. 8,

e(p) = min
m∈R3\{p}

(m − p)T

||m − p|| C−1(p)
m − p

||m − p||

= min
m∈R3\{p}

1

σ2
α

I
∑

i=1

1

||p − oi||2
(1 − (dT

i

p− m

||p− m|| )
2)

= min
m∈R3\{p}

H(m) with H(m) = e(m,p). (74)

We also apply Lemma 7 to function

G : d ∈ S
2 7→

I
∑

i=1

(dT
i d)2

||p − oi||2
: (75)

there is a maximizer dG of G such that ∀i,dT
Gdi ≥ 0.

Since the assertions

• m is a minimizer of H

• p−m

||p−m|| is a maximizer of G,

are equivalent, we can choose a minimizer m of H
using p−m

||p−m|| = dG. Furthermore, we have

0 ≤ dT
Gdi = fi(m) with fi(x) = dT

i

p− x

||p − x|| . (76)

There is at least one fi(m) > 0 since the maximal
value of G is not 0. We define the (no null) vector

d(m) =
I

∑

i=1

fi(m)di

||p− oi||2
. (77)
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The Jacobian of H is

JH(m) =
1

σ2
α

I
∑

i=1

−2fi(m)Jfi
(m)

||p − oi||2
(78)

with the Jacobian of fi

Jfi
(m) =

dT
i (p − m)

||m − p||3 (p − m)T − 1

||m − p||d
T
i . (79)

Since m is a minimizer of H , Eqs. 78 and 79 imply

0 = −1

2
σ2

α||m − p||JT
H(m)

=

I
∑

i=1

fi(m)

||p − oi||2
(
dT

i (p − m)

||m − p||2 (p− m) − di)

=
p − m

||p − m||
I

∑

i=1

f2
i (m)

||p − oi||2
−

I
∑

i=1

fi(m)di

||p− oi||2
.(80)

Thanks to Eqs. 80 and 77 and p−m = ||p−m||dG,

∃λ > 0, ||p− m||dG = p− m = λd(m). (81)

Furthermore, d(m) is a positive linear combination
of di (thanks to Eqs. 77 and 76) and we obtain

∃λi ≥ 0,dG =

I
∑

i=1

λi(p − oi). (82)

Point

o = p +
−1

∑I

i=1 λi

dG =
1

∑I

i=1 λi

I
∑

i=1

λioi. (83)

is both in the convex hull CH of {oi} and in the
line defined by direction dG and point p. Point o

is a minimizer of H , as all other points in this line
(except p). Thanks to this definition of o and Eq. 74,
we obtain

e(p) = min
m∈CH\{p}

e(m,p) = e(o(p),p). (84)

Last, Eq. 71 implies that p /∈ CH and the proof is
finished. �

4.2 Asymptotic Properties

First, we show in Eqs. 88 and 90 the relation between
R and apical angles (p−oi,p−o) or (p−o1,p−o2).
According to Theorem 1, there is o ∈ CH such that

e(p) =
1

σ2
α

I
∑

i=1

1

||p− oi||2
(1 − (dT

i

p − o

||p − o|| )
2). (85)

Let βi = (p − oi,p − o). Since p is far from CH ,
sin βi ≈ βi and ||p − oi|| ≈ ||p − o||. Thus,

e(p) =
1

σ2
α

I
∑

i=1

sin2 βi

||p− oi||2
≈ 1

σ2
α||p− o||2

I
∑

i=1

β2
i . (86)

Since

U(p) =

√

X 2
3 (p)

e(p)
and R(p) ≈ U(p)

||p− o|| , (87)

we see that

R(p) ≈ σα

√

X 2
3 (p)

∑I
i=1(p− oi,p− o)2

. (88)

Similarly, if there are two ray origins, Theorem 1 im-
plies

e(p) = min
o∈[o1,o2]

e(o,p)

≈ min
|a|+|b|=(p−o1,p−o2)

a2 + b2

σ2
α||p − o||2

≈ 1

σ2
α||p − o||2

2(p− o1,p − o2)
2

22

≈ (p− o1,p − o2)
2

2σ2
α||p− o||2 (89)

and we see that

R(p) ≈ σα

√

2X 2
3 (p)

(p − o1,p− o2)
. (90)

Last, we show how U and R increase if p goes far
from the ray origins oi. The double area of triangle
opoi has two expressions

||(o − oi) ∧ (p − o)|| = ||p − oi||.||p − o|| sinβi. (91)
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Since sin βi ≈ βi and ||p− oi|| ≈ ||p− o||, we obtain

(p − oi,p − o) ≈ 1

||p − o|| ||(o− oi) ∧
p − o

||p − o|| ||. (92)

Eqs. 88 and 92 imply that R(p) increases linearly as
the distance between p and the ray origins. Thus,
U(p) increases quadratically.

5 Local 3D Models from Im-

ages

This Section explains how to obtain a local 3D model
from a few images (I images). Local model recon-
structs scene parts which are visible in a reference
image.

The calibration function of the camera is known
and maps image pixels to rays. It acts as a look-up
table, as required in the generic context. A ray is a
half line defined by its origin and direction. Thanks
to the knowledge of camera pose by structure-from-
motion (Section 1.4), origin o and direction d (||d|| =
1) of rays are known in the world coordinate system.

First, the reference image is segmented by a 2D
mesh using gradient edges and color information
(Section 5.1). Second, 3D points are reconstructed
by dense stereo and ray intersection (Section 5.2).
Third, geometric and reliability tests are defined from
generic covariance (Sections 5.3 and 5.4). Fourth, 2D
triangles are back-projected in 3D to fit the recon-
structed points by tacking into account depth discon-
tinuities, hole filling, 3D point uncertainty and reli-
ability (Section 5.5). Last, Section 5.6 discusses the
extension of these methods for non-central cameras.

5.1 2D Mesh

Two standard assumptions are used in this step.
First, the scene surface should be smooth enough to
be approximated by a list of triangles in 3D. Second,
the occluding contours and the tangent discontinu-
ities of surfaces are projected at gradient edges or
color discontinuities in images.

The 2D mesh in the reference image should sat-
isfy many contradictory constraints: gradient edges

at mesh edges, small enough mesh edges for good
approximation of gradient edges, large enough mesh
triangles for stable estimation of triangles in 3D, uni-
form sampling of the field of view, and good aspect
ratio for triangles. A compromise is obtained with
the method described in Appendix B.

The 2D mesh has two kinds of edges: constrained
edges (image contours or image borders) and uncon-
strained edges (Delaunay edges).

5.2 Dense Stereo and Ray Intersec-
tion

In this step, dense multi-view correspondences are
calculated and reconstructed.

We apply standard pair-wise stereo method after
local rectifications (Section 1.1). In our context,
the local rectifications are defined by mappings from
catadioptric images into faces of virtual cubes. Then
the quasi-dense propagation method [20] is applied
between two parallel faces of two cubes. The result-
ing epipolar curves are conjugate and parallel lines,
except for the faces which contains the epipole: the
epipolar lines intersect the epipole at the face center.
Virtual cubes are preferred to virtual cylinders and
catadioptric (donut) images for the reasons given in
Section 1.4. In practice, cube faces are slightly ex-
tended since 3D points may be projected in two cube
faces which are not parallel.

The stereo method is defined for I images as fol-
lows. We consider each catadioptric image pair
(ref , sec) with ref the reference image and sec a sec-
ondary image. First, two-view dense stereo is applied
for a cube of ref and a cube of sec such that faces are
pair-wise parallel. Second, the stereo results are com-
bined in the original catadioptric image ref . For each
pixel of ref , the corresponding points in all secondary
images sec are obtained from the matching between
cube faces and the mappings between cubes and cata-
dioptric images. The calibration function provides
ray origins oi and directions di of matched points in
images i ∈ {1, · · · I}. Third, 3D points are estimated
by the ray intersection method in Section 3.3. If the
final value of cost function E is greater than a thresh-
old (or if one of the I rays is not available), we can
legitimately doubt the matching quality and no 3D

14



point is retained. Small gaps (pixels of ref without
3D points) are filled with 3D points by interpolation.

5.3 Geometric Tests

Here we use the generic covariance C(p) to define
several tests, which are systematically used by mesh
operations for 3D modeling. Eq. 8 provides the ex-
pression of C(p) using point p, ray origins {o} and
scale σα. Section 3.3 describes a method to estimate
σα.

Let Π be the plane n⊤x+d = 0. The Mahalanobis
point-to-point and point-to-plane [30] squared dis-
tances are respectively

d2(p1,p2) = (p1 − p2)
⊤

C−1(p1)(p1 − p2)

d2(p1, Π) = min
p2∈Π

d2(p1,p2) =
(n⊤p1 + d)

2

n⊤C(p1)n
.(93)

The point-to-point neighborhood test T (p1,p2) is
true if d2(p1,p2) ≤ X 2

3 (p) and d2(p2,p1) ≤ X 2
3 (p).

Reminder: X 2
3 (p) is defined in Eq. 61.

The point-to-plane neighborhood test T (p1, Π) is
true if d2(p1, Π) ≤ X 2

3 (p).
The coplanarity test T ({pi}) is true if there is a

plane Π such that all T (pi, Π) are true. In practice,
Π is estimated by random samples of 3 points in {pi}.

5.4 Reliability Test

A point p reconstructed from rays (oi,di), i ∈
{1 · · · I} may be so inaccurate that the 3D model
should not contain it. Such an example occurs if cam-
era locations are collinear: p is inaccurate and should
be rejected if it is too close to the line supporting the
oi.

At first glance, we can decide that p is “reliable”
enough for 3D modeling if uncertainty U(p) (Eq. 62)
is less than a threshold Umax . However, a reliability-
based decision is preferred: the reliability test T (p)
is true if

R(p) ≤ Rmax with R(p) =
U(p)

mini ||p − oi||
(94)

and Rmax a threshold. Now we give advantages of
reliability over uncertainty for the decision.

Since the camera is central, the reconstruction is
defined up to a global 3D scale and a scale change
of the whole reconstruction (3D points and camera
centers) implies the same scale change of the uncer-
tainties. Thus, uncertainty thresholding should have
a threshold Umax which is proportional to the scene
scale to obtain a decision which does not depend on
the scale. A first reason to use Eq. 94 is its scale
independence.

Furthermore, Eq. 94 allows reliable points for 3D
modeling of the scene to have greater uncertainties
if they are a long distance from ray origins oi and
smaller uncertainties if they are close. More pre-
cisely, the permitted maximal uncertainty is propor-
tional to the distance between point p and ray ori-
gins oi. Thus, close foreground and far background
of the scene are modelized at different uncertain-
ties. This is better than the uncertainty thresholding
U(p) < Umax which rejects too much background.

We note that the reliability test in Eq. 94 has two
properties: (1) points in the neighborhood of the line
supporting the oi (if any) are unreliable and (2) the
set of reliable points is bounded. These properties
result from Eqs. 88 and 92.

5.5 2.5D Mesh

Now the geometric and reliability tests (Sections 5.3
and 5.4) are used to generate a 2.5D mesh by back-
projection of the 2D mesh in the reference image
using the dense cloud of reconstructed points. Sec-
tions 5.1 and Section 5.2 explain how to obtain the
2D mesh and the cloud, respectively.

The principle of the method is the following. First,
the 2.5D mesh is initialized as a list of fully discon-
nected triangles in 3D. Then, this mesh is refined by
alternating operations “Triangle Connection”, “Hole
Filling”, “Triangle Removal”, “Triangle Damping”
and “Mesh Refinement”. Last, unreliable triangles
are rejected.

At any step, the 2.5D mesh in 3D is a back-
projection of the 2D mesh in the reference image:
each triangle t2d of the 2D mesh corresponds to a
triangle t3d of the 2.5D mesh with vertices vi ∈ R

3.
The t3d vertices are parametrized by depths zi > 0
such that vi = oi + zidi with (oi,di) the observation
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rays of t2d vertices. Vertices in the 2D mesh may
have many depths depending on current connections
between triangles in 3D.

In Section 5.5, the index i is used for vertex num-
bering, not for image numbering as in all previous
Sections. Thus ∀i,oi = o since the camera is central.

Mesh Initialization A RANSAC procedure is ap-
plied to each triangle t2d. First, all 3D points re-
constructed from pixels inside t2d are collected in a
list Lt2d . Second, planes are calculated for random
samples of 3 points in Lt2d . Let Π be the plane min-
imizing

E2
t2d(Π) =

∑

p∈L
t2d

min{X 2
3 (p), d2(p, Π)} (95)

with X 2
3 (p) and d(p, Π) introduced in Eqs. 62 and 93.

Then, we estimate depths zi at the 3 vertices of t2d

such that oi + zidi ∈ Π with (oi,di) the observation
rays of these vertices. The triangle in 3D with three
vertices oi + zidi is added in the 2.5D mesh if zi > 0.

Pair-Wise Triangle Connection Triangles in 3D
should be connected to obtain a more realistic 3D
model.

Let t3d
a and t3d

b be two 3D triangles such that the
associated triangles t2d

a and t2d
b in the 2D mesh have

a common edge (t2d
a and t2d

b are “weakly” connected).
This edge has two vertices 0 and 1 in 2D, which cor-
respond to triangle vertices {va

0 ,vb
0} and {va

1 ,vb
1} in

3D. The connection between t3d
a and t3d

b is made if
the point-to-point neighborhood tests T (va

0 ,vb
0) and

T (va
1 ,vb

1) defined in Section 5.3 are true.
The connection between t3d

a and t3d
b is defined as

follows. Let za
i and zb

i be depths such that va
i = oi +

za
i di and vb

i = oi + zb
idi with (oi,di) the observation

rays of 2D vertices i ∈ {0, 1}. New values of za
i and zb

i

are set to the former value of 1
2 (za

i + zb
i ). Henceforth,

the 2.5D mesh parameters za
i and zb

i are linked by
constraints za

i = zb
i for further processing.

Group-Wise Triangle Connection The “Pair-
Wise Triangle Connection” above connects any tri-
angle pair in 3D if they satisfy neighborhood condi-
tions. Here we introduce the “Group-Wise Triangle

Connection”, which connects any k-group of triangles
in 3D if they satisfy a coplanarity condition (typically
k ∈ {2, 3, 4}).

A k-group of triangles in 3D is a list of k trian-
gles t3d

j such that the corresponding triangles t2d
j are

“strongly” connected in the 2D mesh. Two triangles
are strongly connected if they have a common edge
which is not constrained in the 2D mesh. We avoid
constrained edges since they are potential surface dis-
continuities in 3D.

Any triangle pair {t3d
a , t3d

b } in 3D is connected as in
the pair-wise case if it is included in a k-group satisfy-
ing a coplanarity condition and if the corresponding
{t2d

a , t2d
b } in 2D have a common edge. Section 5.3 de-

fines the coplanarity condition by T ({vi}) with {vi}
the list of all triangle vertices of the k-group.

Triangle Removal A smooth surface of the scene
is expected to be approximated by a list of connected
triangles in 3D. If a triangle is not connected to (at
least) one of its neighbors after trials of triangle con-
nections, we have some doubt as to its quality and
may decide to remove it from the 2.5D mesh. They
are many reasons for fully disconnected and bad tri-
angles in 3D: false positive matches in images, tri-
angle estimations using 3D points in both close fore-
ground and far background, too few points for reliable
estimation.

Triangle Damping The main drawback of “Tri-
angle Removal” is the lack of triangles in scene parts
which are not smooth such as tree foliage. If a tri-
angle t3d without connection is not removed, it may
produce a major degradation of visual quality if it is
very stretched in 3D in the direction d of ray which
goes across t3d center. In this case, the angle θ be-
tween t3d normal n and d is greater than a threshold
θ0.

Thus, “Triangle Damping” reduces such degrada-
tions as follows: if θ0 < θ, the t3d depths zi are dis-
turbed such that (1) the t3d center is fixed and (2) n is

reset by cos(θ0)d+sin(θ0)
d̃

||d̃|| with d̃ = n−(n⊤d)d.

“Triangle Damping” may be preferred to “Triangle
Removal” to obtain more triangles in the 3D model.
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Hole Filling In our context, a hole is a connected
component of triangles t2d

j in the 2D mesh without

corresponding triangles t3d
j in the 2.5D mesh. “Hole

Filling” is the definition of the lacking t3d
j by inter-

polation of depths available in the hole border. Holes
are mainly due to false negative matches in low tex-
tured areas. They degrade the visual quality of 3D
model rendering if they are not properly filled.

The main risk is depth interpolation between fore-
ground and background which also degrades the ren-
dering quality, especially if foreground and back-
ground have different colors. We have the choice be-
tween strong connectivity (used in “Group-Wise Tri-
angle Connection”) and weak connectivity (used in
“Pair-Wise Triangle Connection”) between two tri-
angles in the 2D mesh to define a hole as a connected
component. The former is preferred to the latter,
since the latter includes potential surface discontinu-
ities at constrained edges too easily in the hole.

Thus, the hole border is a list of edges in the 2D
mesh such that (1) edges are constrained or (2) edges
are not constrained and have depths at their two ver-
tices. All 3D points corresponding to these vertices
with depths are collected in a list {vi}. We also de-
fine r as the ratio between the sum of 2D lengths of
edges of type (2) and the sum of 2D lengths of all
border edges.

We would like a well defined interpolation and a
low risk of depth interpolation between foreground
and background. Thus we request that the hole bor-
der is coplanar using coplanarity condition T ({vi})
defined in Section 5.3. We also request enough 3D
information at the hole border using thresholding:
0.5 < r.

If T ({vi}) is true, there is a plane Π which approx-
imates the vi and “Hole Filling” is defined as follows.
Each vertex in the hole (including border) has a cor-
responding observation ray (oi,di) and a depth zi

defined by oi + zidi ∈ Π. Any hole triangle t2d with
positive zi at its vertices defines a new triangle t3d

in the 2.5D mesh. We set depth constraints for fur-
ther processing such that these vertices have only one
depth.

Mesh Refinement The parameters of the 2.5D
mesh is the list of depths zi for each triangle ver-
tex in 3D with many constraints (equalities) between
the zi. Operations “Hole Filling” and “Pair/Group-
Wise Triangle Connection” are useful to increase the
rendering quality of the 3D model, but they reduce
the number of independent zi and disturb the initial
values of zi obtained from the 3D point cloud. The
consequence is an increasing discrepancy between the
3D point cloud and the 2.5D mesh. This problem is
reduced by minimizing a global cost function includ-
ing a discrepancy term and a smoothness term. The
smoothness term is useful to reduce noise and enforce
a prior knowledge of a piecewise smooth surface on
the 2.5D mesh.

The cost function e3d({zi}) is defined by

∑

t∈T

E2
t + λ

∑

{t1,t2}∈Ed

1

2
(|t1| + |t2|)(nt1 − nt2)

2 (96)

with T the list of 2D mesh triangles which have trian-
gles in 3D, {t, t1, t2} ⊂ T , {t1, t2} the edge between
triangles t1 and t2, |t| the surface (in pixels) of t, Ed
the list of unconstrained edges in the 2D mesh, and
nt the normal of the 3D triangle corresponding to the
2D triangle t. Weight λ is equal to 1 and E2

t is de-
fined in Eq. 95. The cost function is minimized by a
descent method with depths {zi} as parametrization.
Depths have a wide range due to close foreground and
far background, and this should be taken into account
to reduce the cost efficiently. Let zn

i be the i-th depth
at iteration n of the descent method. At iteration
n+1, we choose zn+1

i ∈ {zn
i − δi(z

n
i ), zn

i , zn
i + δi(z

n
i )}

which minimizes the partial function zi 7→ e3d(zi).
Generic uncertainty is used to scale the increment δi

by δi(z) = ǫU(oi + zdi) with ǫ = 0.02.

Algorithm Summary Many combinations of the
mesh operations above are possible and have been the
subject of experiments. Our favorite strategy cur-
rently is

1. Mesh Initialization

2. Apply Group-Wise Triangle Connection (k = 4),
Hole Filling and Mesh Refinement alternatively
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3. Triangle Removal or Triangle Damping (θ0 =
7
20π)

4. Apply Pair-Wise Triangle Connection, Hole Fill-
ing and Mesh Refinement alternatively.

5. Remove triangles with unreliable vertex
(Eq. 94).

Step 2 connects triangles with strong conditions be-
fore step 3. Once step 3 has removed (or damped)
improbable and unconnected triangles, step 4 con-
nects triangles with weaker conditions.

5.6 From Central to 100% Generic
Camera

The method in Section 5 has many limitations.

The first limitation is due to the use of a 2D mesh in
a reference image (Section 5.1). The camera should
not be too exotic to back-project connected image
points (e.g. 2D triangles) to connected points in 3D
(e.g. planar scene parts). Thus we should assume
that the calibration function which maps pixels to
rays in 3D is piecewise C0 continuous with known,
smooth and polygonizable discontinuities. These dis-
continuities should be included in the 2D mesh bor-
der. Here is a simple example of discontinuity: the
line between two composite images in the generic im-
age of a stereo-rig.

The second limitation is due to the generic covari-
ance definition used in the geometric and reliability
tests (Sections 5.3 and 5.4). The definition of C(p)
requires the ray origins corresponding to p. If the
camera is (approximated by) a central camera or if
p is reconstructed by ray intersection, the ray origins
are known. They are unknown in other (non-central)
cases, unless we apply the projection functions to p

(but this is not a generic method). More investiga-
tions are needed to estimate efficiently ray origins in
a generic camera framework for non-central cameras.

6 From Local to Global 3D

Models

A local 3D model (Section 5) is not adequate for a
complex scene since it is view-centered. Section 6 ex-
plains how to obtain a global 3D model of the scene
from a list of local models reconstructed along the se-
quence. Typical lists are obtained by reconstruction
of one local model for each I-tuple of consecutive still
images (or video key-frames) of the sequence.

Global model reconstruction from local models in-
volves view point selection, redundancy reduction,
merging into topological manifold, mesh simplifica-
tion, texture merging and packing. Our work only
focuses on view point selection and redundancy re-
duction using generic covariance. Other topics are
outside the paper scope.

6.1 View Point Selection

We formalize the view point selection problem as fol-
lows. Point p is reconstructed in local model l0 and
we would like to know if l0 is one of the available local
models which reconstruct p with the best accuracies.
If so, p is retained in the global model. Note that p

may be reconstructed in a large number of local mod-
els (in a typical list of local models) at very different
accuracies, especially if the camera has a wide field
of view.

Let Ul(p) be the generic uncertainty (Eq. 62) of p

using one ray origin oi for each image of local model
l. The list of reconstructed local models is L. Local
model l0 is one of the best local models to reconstruct
p if

U r
l0

(p) ≤ 1 + ǫ with U r
l0

(p) =
Ul0(p)

minl∈L Ul(p)
(97)

and threshold ǫ ≥ 0. In practice, ǫ > 0 is useful to
reduce the lack of triangles due to matching failures
(false negatives).

At this point, several remarks arise. First, the view
point selection defined by Eq. 97 requires the calcu-
lation of ray origins oi for p and for all local models
in L. As discussed in Section 5.6, this problem is
not yet solved in the non-central case. This is not
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a problem in our case where the camera is (approxi-
mated by) a central camera: the oi are the locations
of camera center. Second, we note that Eq. 97 does
not depend on probability p and scale σα involved in
the generic uncertainty definition (Eqs. 62 and 5). In-
deed, changing p or σ is a multiplication of all Ul(p)
by the same value.

A triangle of l0 is retained in the global model if
(at least) one of its three vertices p satisfies Eq. 97.
Thus, the time complexity of the view point selection
method is |L|2|V | with |L| the number of local models
and |V | the number of 3D vertices in a local model
(|V | is assumed to be constant).

Note that this definition of view point selection
does not depend on p visibility in views of the se-
quence (nor does the generic uncertainty definition).
In fact, the use of Ul(p) for view point selection has
no sense if p can not be reconstructed by l due to lack
of visibility. Thus Eq. 97 is improved by taking visi-
bility into account as follows: we reset Ul(p) = +∞
if p is not in the view field of (at least) one image of l.
We may also consider the global surface to be recon-
structed as a possible occluder for p in each image of
l, but this problem is not integrated in this paper.

6.2 Redundancy Reduction

The method in Section 6.1 generates a global model
from selected parts of local models which have the
smallest uncertainties. Although the result is ready
for visualization, a redundancy reduction method is
useful to decrease the number of triangles.

Triangles with the largest uncertainties are pro-
gressively removed if they are overlapped (up to their
uncertainty) by other triangles of the global model. A
region decreasing-like method is used. At each step,
we focus on the triangle t with the largest generic un-
certainty which is on the border of one of the meshes
currently retained in the global model. The uncer-
tainty volume of t is defined as follows. The t vertices
are vi = oi +zidi, i ∈ {1, 2, 3} with depths zi and ob-
servations rays (oi,di) in the reference image of the
local model l which reconstructs t. The volume is a
truncated triangular cone with face f+ : vi+Ul(vi)di

and face f− : vi − Ul(vi)di. Then we test if t is
overlapped by other triangles: (1) all triangles which

intersect the volume are collected in a list (2) the vol-
ume is sub-sampled into segments connecting f+ and
f− (3) t is overlapped if all segments intersect trian-
gle(s) in the list. If t is overlapped, it is removed from
the global model. The process stops when there is no
overlapped triangle in mesh borders. In practice, step
(1) is accelerated using hierarchical bounding boxes
and test eliminations.

7 Experiments

First, Sections 7.1 and 7.2 illustrate properties of
generic covariance (Sections 3 and 4). Second, ex-
periments are provided for our catadioptric cameras.
The accuracy of the local 3D model reconstruction
method (Section 5) is evaluated on a synthetic scene
in Section 7.3. Section 7.4 illustrates the view point
selection method (Section 6) to generate the global
3D model. Last, the overall system is experimented
in Section 7.5 on real image sequences.

7.1 Properties of Generic Uncertainty
and Reliability

Figure 1 shows generic uncertainty U and relia-
bility R using values X 3

2 (0.9) = 6.25 and σα =
0.001. Black edges are the main axes of un-
certainty ellipsoids centered at certain points p

(their length is 2U(p)). Every point p has a
gray level depending on the interval where R(p)
lies: [0, 1

40 [, [ 1
40 , 2

40 [, [ 2
40 , 3

40 [, [ 3
40 , 4

40 [, [ 4
40 , +∞] (dark-

est gray levels for largest R).

In the first case (on the left), we have two ray ori-
gins o1 and o2. Both U(p) and R(p) are defined ev-
erywhere (except on the line defined by o1 and o2).
Due to the symmetry of the problem, U and R are
the same for any plane in 3D containing o1 and o2.
Furthermore, U and R increase in two cases: (1) if p

goes toward a line defined by o1 and o2 or (2) if p

goes far from {o1,o2}. We also see at the bottom that
our generic reliability is similar to the angle-based re-
liability used in [6, 35]: curves implicitly defined by
constant R(p) are very similar to circles defined by
constant apical angle (o1 − p,o2 − p).
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Figure 1: Virtual uncertainty U and reliability R
in a plane for two ray origins (left), three collinear
ray origins (middle) and three non collinear ray ori-
gins (right). Ray origins are black points in this
plane. Black edges are the main axes of uncertainty
ellipsoids centered at some points p (their length is
2U(p)). Every point p has a gray level depending
on the interval where R(p) lies. On the left, black
curves are circles defined by constant apical angles.

In the second case (in the middle), we add a ray
origin o3 in the middle of o1 and o2. The result
is unexpected: there is no improvement (i.e. U or R
decrease) by adding o3. In fact, the results are nearly
the same.

In the third case (on the right), we slightly move o3

toward the bottom. As expected, the improvement is
noticeable in the neighborhood of the line defined by
o1 and o2. In these two last cases, our R definition is
naturally derived from U for any numbers of views.
This is not the case for angle-based reliability [6],
which is only defined for two views.

Last, a numerical test is provided for the asymp-
totic relation (Eq. 90) between reliability R and api-
cal angle (o1−p,o2−p) in two cases: two ray origins
o1 and o2, and three ray origins with o3 = 1

2 (o1+o2).
Function

a(p) = (o1 − p,o2 − p)
R(p)

σα

√

2X 3
2 (p)

(98)

should have a small standard deviation σa and a
mean ā close to 1 if p is far enough from ray origins.
Values σa and ā are estimated from samples p in a
ring centered on o3 with large radius rl = 10||o1−o2||
and small radius rs = 1

2 ||o1 − o2|| (the ring is in
a plane which contains the ray origins). We obtain
(ā, σa) = (1.06, 0.15) in the two ray origin case and
(ā, σa) = (1.05, 0.11) in the three ray origin case.

Larger rs and rl improve the results, as expected.

7.2 Errors in Unit Sphere, Image and
3D

We have seen that the generic covariance definition
is based on S

2 error (Section 2). Furthermore, the
projection function p of the camera propagates this
error to image error such that the uncertainty ellipses
of image error are distortion ellipses of p (Section 3.1).
Figure 2 shows these ellipses for our equiangular cata-
dioptric camera (on the right) and two other cases:
a perspective projection into a cube face (on the
left) and an equirectangular projection (in the mid-
dle). The equirectangular projection maps 3D point
to its spherical coordinates (ϕ, θ) and is often used for
panoramic imaging (Figure 2 only shows a half part
of the view field). We see that the propagated image
error depends on p and is not “standard” (isotropic
and uniform in the whole image), especially for cam-
eras with wide view fields.

We deduce from Figure 2 that a local rectification
from the catadioptric image (on the right) into cube
face (on the left) provides a more standard image er-
ror. A yet more standard image error is obtained if we
replace the perspective projection (left of Figure 2)
by the equirectangular projection (right of Figure 3).

Figure 3 illustrates the virtual cubes and the epipo-
lar geometry involved in the dense stereo step of our
reconstruction method (Section 5.2). The equirect-
angular projection is used for the local rectifications
into cube faces. According to Section 3.2, this choice
makes the generic covariance similar to the virtual
covariance.

7.3 Accuracy of Local 3D Models for
a Synthetic Scene

Now, quantitative results are given for a local 3D
model reconstructed from catadioptric images: scene
accuracy (discrepancy between scene reconstruction
and its ground truth) and calibration accuracy (dis-
crepancy between the calibration and its ground
truth).

20



Figure 2: Distortion ellipses for the perspective pro-
jection into a face cube (left), the equirectangular
projection (middle) and our equiangular catadioptric
camera (right). The circular cone aperture 2ǫ of all
distortion ellipses is π

25 .

i i

ii

a b

p

θ ϕ ϕ

Figure 3: Left: two virtual cubes with pair-wise par-
allel faces for dense stereo, and epipolar plane de-
fined by point p and camera centers a and b. The
projection of p into the front face of the left cube
is parametrized by spherical coordinates ϕ and θ.
Right: distortion ellipses with aperture 2ǫ = π

25 for
the projection function p 7→ (θ(p), ϕ(p)) into cube
face.

Summary First, synthetic images are generated
using ground truth (non-central) calibration. Second,
structure-from-motion [18] (SfM) and the 3D model-
ing method described in Section 5 are applied using
many central calibrations defined by radial distortion
functions. Third, the scene reconstructions are reg-
istered with ground truth and quantitative evalua-
tions are made. Details on non-central calibration
and registration are shown later in Appendix A. The
scene reconstructions are degraded for many reasons:
image noise, approximate calibration, small baseline
(due to distant or collinear points with the camera
motion) and low textured areas.

Experiment Choice The catadioptric camera
moves inside a textured cube to experiment the re-
construction in the whole field of view. A represen-
tative range of baselines is obtained with the follow-
ing ground truth: the [0, 5]3 cube and camera loca-

tions defined by oi =
(

1 1 + i
5 1

)⊤
, i ∈ {0, 1, 2}

(numbers in meters). Camera orientations (rota-
tions) are slightly perturbed around I3 to simulate
hand-held camera. The catadioptric image is a ring
with large radius of 1128 pixels and is projected into
cube faces such that each face has about 440 × 440
pixels (as in real experiments).

Scene Accuracy A standard definition of error
err(p) for a reconstructed point p is the signed dis-
tance of p to the ground truth surface. In the context
of a camera rotated around a small object, it is a nat-
ural choice to tolerate a uniform error for all parts of
the object [31]. In our context of a camera moving
in a scene including close foreground and far back-
ground, it is more adequate to define an error tol-
erance which increases with point depth. Thus, our
accuracy measure a0.9 is defined by the 90% fractile

of |err(p)|
||p−o1|| for all triangle vertices p of the 3D model.

In other words, |err(p)| ≤ a0.9||p − o1|| is true for
90% of vertices.

Experiments Figure 4 shows reconstruction re-
sults of the synthetic cube using three central calibra-
tions “Best”, “Shift” and “Sfm”. These calibrations
are defined by radial distortion functions β(r), which
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Figure 4: Reconstruction results of a synthetic cube using three calibrations: “Best” (row 1), “Shift” (row
2), and “Sfm” (row 3). Calibrations are defined by radial distortion functions which map radius r of image
point to angle β between ray and camera axis. From left to right: mapping r 7→ β(r) superimposed with its
ground truth, error graph, triangle vertices and faces of ground truth cube projected onto 3 planes (more
details in the text). All numbers are in centimeters, except in the first column. Row 4 shows many texture-
mapped views of the local 3D model reconstructed with “Sfm” and one image of the sequence. Each local
3D model is constructed from 3 camera locations, which are shown in the middle column.
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map normalized radius r of image point to angle β
between ray and camera axis (small and large circles
are r = 0 and r = 1, respectively).

The first column shows many β(r) graphs.
Camera poses are estimated using Structure-from-
motion [18], and local 3D models are obtained us-
ing method of Section 5. “Best” is a very accu-
rate approximation of radial distortion defined by
the true (non-central) calibration. “Shift” is “Best”
shifted by 2 degrees. “Sfm” is estimated by structure-
from-motion [18]. The standard deviation of β (with
ground truth) of calibrations “Best”, ”Shift” and
“Sfm” are 0.077, 1.98 and 0.65 degrees, respectively.

The second column of Figure 4 shows the corre-
sponding error graphs defined by joint distribution
of depth x = ||p − o1|| and error y = err(p) for all
triangle vertices p of the 3D models. 90% of dots
(x, y) are between the two lines y = ±a0.9x with

abest
0.9 = 0.0085, ashift

0.9 = 0.033 and asfm
0.9 = 0.015.

In examples “Shift” and “Sfm”, β(r) inaccuracy pro-
duces a majority of vertices inside the ground truth
cube where error err(p) is negative. The β(r) inac-
curacy also increases a0.9. The cloud dispersion of
“Sfm” is slightly larger than that of “Best”.

The other columns of Figure 4 project the local
3D models into planes (xy), (xz) and (zy), which are
parallels to faces of the ground truth cube. In the
“Shift” case, calibration inaccuracy produces camera
pose distortion, cube distortions and a majority of
vertices inside the ground truth cube. These prob-
lems are less visible for “Sfm”.

The row on the bottom shows texture-mapped
views and triangle orientations of the reconstructed
model “Sfm”. A large neighborhood of a cube corner
(on the left) and a small part of the red ground (on
the right) are not reconstructed since they are not in
view field.

7.4 Local 3D Model Selection for
Catadioptric Camera

The global 3D model of a scene is obtained by view
point selection of local 3D models (Section 6.1): a
point p reconstructed in local model l0 is retained
in the global model if the relative uncertainty U r

l0
(p)

Figure 5: Top: three locations (black points) of a
catadioptric camera moving in horizontal plane (view
fields are bounded by cones). Middle: mapping
p 7→ U r

l0
(p) on this plane and a shifted plane with

l0 two 3-view local 3D models of a 15-view sequence.
Bottom: local zooms of figures in the middle. The
camera locations of local model l0 are black points;
others locations are white. Values [1, 1.5] of U r

l0
are

mapped to colors white-gray; larger values are dark
gray; undefined U r

l0
(p) area is white-gray checker-

board.

is less than a threshold (Eq. 97). Section 7.4 illus-
trates how this method works for a typical list of
local 3D models (one local model is reconstructed for
each triplet of consecutive images of the sequence).

Figure 5 shows values of U r
l0

for a catadioptric cam-
era pointing toward the sky and moving on the hori-
zontal ground with almost collinear camera locations.
In the first case (columns 3 and 4 on the right), the
local model is not at the end of the whole sequence.
We note that a kind of planar slice of the 3D space
contains small values of U r

l0
(p), with U r

l0
(p) = 1 at

the central component. The planar slice goes across
the middle camera, its thickness increases with the
distance to the middle camera, and it is connected to
both ends of the whole camera sequence. It should be
remembered that visibility is used in the view point
selection as follows: we reset Ul(p) = +∞ if p is not
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in the view field (of at least one image) of local model
l. In the catadioptric case, we have Ul(p) = +∞ if p

is in a blind cone of l shown on the top of Figure 5.
This has several consequences: (1) U r

l0
is not defined

outside the view field of l0, (2) U r
l0

is not continu-
ous at boundaries of view fields of l with l 6= l0, and
(3) the reconstruction of ground surface is allowed.
Figure 5 shows these 3 consequences in column 4:
(1) white-gray checker-board, (2) gray level discon-
tinuities and (3) low values of U r

l0
in the immediate

neighborhood of the camera trajectory on the ground
(if the shifted plane of the figure is the ground sur-
face). In the second case (columns 1 and 2 on the
left), the local model is at the end of the whole se-
quence. The planar slice is replaced by a large section
of a half space, and the three notes on visibility are
still correct.

Figure 6 shows results of view point selection
(Eq. 97 with ǫ = 0.1) combined with unreliable point
rejection (Eq. 94 with Rmax = 0.1, σα = 0.001 and
X 2

3 (0.9) = 6.25). On the left, gray levels encode the
minimal uncertainty available to reconstruct scene
point p with all local 3D models of the typical list
L of a 11-view sequence. On the right, gray levels
encode the number of local models available to recon-
struct scene point p thanks to view point selection.
This number is the modeling redundancy at p. We
note that redundancy increases if p leaves the cam-
era trajectory, and redundancy is limited thanks to
unreliable point rejection.

7.5 Real Examples

Now, the overall reconstruction system is experi-
mented on still images sequences taken by equian-
gular catadioptric cameras, which are hand-held and
mounted on a monopod (such a camera choice is dis-
cussed in Section 1.3). We obtain 3264× 2448 JPEG
images with the following setup: adequate mirrors [1]
mounted with the Nikon Coolpix 8700 using adapter
rings (Figure 7). Both image dimensions are divided
by 2 to accelerate structure-from-motion (SfM), mesh
estimations, and to facilitate texture storage of the
VRML models. Only dense stereo benefits from orig-
inal image sizes using the local rectifications into cube
faces (Section 5.2).

Figure 6: Left: gray levels encode p 7→
minl∈L Ul(p) = Ul(p)(p) in the plane where the cam-
era moves. Areas with the same best local model
l(p) are bordered by black lines. Right: gray levels
encode the number of local models accepted by view
point selection (darkest gray: 1 local model, white: 8
local models). Black pixels on the image borders are
points rejected by reliability condition.

Figure 7: 360 One VR (left) and 0-360 (right) mirrors
mounted with the Nikon Coolpix 8700.
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Church Sequence We take 208 images during a
complete walk around a church using the 360 One VR
(model 3) mirror, using a supplementary adapter ring
which adds 2 cm between mirror and perspective
camera. The trajectory length is about (25± 5cm)×
208 = 52± 10m (the exact step lengths between con-
secutive images are unknown). The radii of large and
small circles of the catadioptric images are 1128 and
232 pixels.

SfM is the first step of the method (Section 1.4).
Figure 8 shows top views of the SfM results obtained
with slight modifications of the method [18]: the
number of inlier points is bounded by 500 in each
image to accelerate hierarchical bundle adjustment
and (optional) loop closure, then a last global bun-
dle adjustment is applied without inlier bounds. The
unclosed reconstruction and its drift are shown in the
top left corner; its closed version is shown in the
top-right corner. The final result is shown at the
bottom with some images. It has 76033 3D points
and 477744 points in images satisfying the geome-
try. The final RMS error is 0.74 pixels. A 2D point
is considered as an outlier if its reprojection error is
greater than 2 pixels. With our setup, the estimated
view field angles are αup = 41.5, αdown = 141.7 de-
grees (the angles given by the mirror manufacturer
are αup = 40, αdown = 140 degrees).

The second step is the calculation of a list of local
3D models (Section 5). Here we use typical list: one
local model for each triple of consecutive images of
the sequence. Figure 9 shows the reference image,
the depth map and the 2D mesh of a local model.
The reference image is between the two others. Once
the catadioptric images are projected into cube faces,
quasi-dense propagation [20] is used and benefits by
the large number of seed matches provided by SfM
inliers. The depth map is given in the original ref-
erence image. The 2D mesh has 22894 triangles and
the 2.5D mesh is generated using X 2

3 (0.9) = 6.25 and
σα = 0.00082 radians. This value of σα is estimated
from the dense cloud reconstruction (using Eq. 60) of
all local models of the list. Figure 9 also shows views
of the local model without and with rejection of un-
reliable triangles (using Eq. 94 and Rmax = 0.05).
The local model with rejection has 10510 triangles.
A small part of the ground and the upper part of the

facade are in the blind cones defined by the small and
large circles of the catadioptric images and can not
be reconstructed for this reason.

Once the 208 local 3D models of the closed se-
quence are reconstructed (with the same value of σα),
the global 3D model is obtained by view point selec-
tion and redundancy reduction (Section 6). First, tri-
angles of local models are selected using the reliability
test: all vertices p of a triangle should satisfy Eq. 94
with Rmax = 0.04. We obtain 2249675 triangles. Sec-
ond, view point selection is applied: any triangle of
any local model is retained in the global model if it
has at least one vertex p such that Eq. 97 is true with
ǫ = 0.1. Only 31% of triangles are retained (681561
triangles). The (final) global model has 368814 tri-
angles after redundancy reduction. Figure 10 shows
many views of this global model of the church and its
neighborhood. The reader can match the top view of
the model (top of Figure 10) with the top view of the
SfM result in Figure 8.

Now, the difficulties of this scene and the conse-
quences on the global 3D model are shown in detail.
There are four trees in the immediate neighborhood
of the church and many others which are more dis-
tant. Since trees are important scene components, we
choose to not remove triangles which are unconnected
with others to modelize the foliage as clouds of tex-
tured triangles. Thus, the “Triangle Damping” mesh
operation is preferred and used instead of the “Trian-
gle Removal” operation (Section 5.5). The drawback
is the presence of certain isolated and false triangles
in other scene components. Furthermore, the scene
has many low textured areas: streets, cars, and sky.
The consequences are the presence of a number of
holes and inaccurate reconstructions in the streets or
distant cars. Reconstruction is almost impossible for
the blue car which is very close to the camera trajec-
tory (see picture in the top-left corner of Figure 8).
The sky is globally unmatched thanks to the confi-
dence measure used by quasi-dense propagation [20],
but minor parts of the sky occur in reconstructed
foliage and at the top of some buildings. Last, the
images are taken in the early morning. Two conse-
quences are: (1) the shadow of the author occurs in
several images and (2) the first and last images of the
closed sequence have different textures. The former
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Figure 8: Top: unclosed and closed structure-from-motion results with reduced number of 3D points. Bot-
tom: closed structure-from-motion with all 3D points and some images of the Church.
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Figure 9: Top: reference image and depth map of a 3-view local model. Middle left: local view of the 2D
mesh (constrained and unconstrained Delaunay edges are red and blue, respectively). Middle right: local
model without reliability test. Bottom: local model with reliability test (triangle orientations on the right).
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Figure 10: From top to bottom: top view and height map of church global model, local view (texture and
orientation of triangles).
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complicates dense stereo and ground reconstruction.
The latter complicates matching used by SfM loop
closing and dense stereo.

Old Town Sequence This sequence has 354 im-
ages and is acquired using the 0-360 mirror. The
radii of large and small circles are 1140 and 204 pix-
els. The trajectory length is about (35±5cm)×353 =
122 ± 17m.

SfM estimates 149792 3D points with 819087 2D
inliers and RMS error equal to 0.75 pixels. These in-
lier numbers are larger than those in [17] thanks to
a slight modification of the SfM method. Figure 11
shows a top view of the SfM result and some images
of the sequence. The estimated view field angles are
αup = 34.5, αdown = 152.9 degrees (the angles given
by the mirror manufacturer are αup = 37.5, αdown =
152.5). Then, the 352 local models of the typical list
are estimated using X 2

3 (0.9) = 6.25 and σα = 0.00089
radians. The numbers of triangles after unreliable
triangle rejection (Rmax = 0.03), view point selec-
tion (ǫ = 0.1) and redundancy reduction are 4991183,
1786919 and 1184620, respectively. Figure 12 shows
many views of the final global model. The joint video
is a scene walkthrough in the scene.

We note that the reconstruction of building tops is
inaccurate since it involves several difficulties. First,
building tops are not visible by the closest local model
but by others which are more distant (small baseline).
Second, there is a lack of calibration accuracy (angle
αup) in the neighborhood of the large circle where
building tops are projected . Third, false matches
are not rejected by epipolar constraint since the cam-
era motion is parallel to the building borders. In this
context, unreliable triangle rejection is useful to avoid
these parts in the global model. Other difficulties are
low textured areas (buildings, ground, cars), specu-
lar reflections on windows, and a major illumination
change during image acquisition.

We also note that a few parts of the scene are not
retained in the global model by view point selection,
although they are not in a blind cone of the local
model which provides the smallest uncertainty. These
parts sometimes include walls with plane normal par-
allel to the camera trajectory at the closest camera

location. This is due to our current and limited use
of visibility in the view point selection (end of Sec-
tion 6.1).

8 Conclusion

This paper is a new step towards the automatic 3D
modeling of scenes using a generic method, which
can be applied for any kind of camera. First, we
introduce a generic covariance for central cameras.
Proof is given for its definition and several properties:
asymptotic behaviors, links with the apical angles,
links between the generic covariance and the covari-
ance which results from the ray intersection problem
defined by the sum of squared reprojection errors in
pixels. Second, we present a 3D modeling method
from images which systematically uses the generic co-
variance. More precisely, generic covariance is used
to weight minimized scores involved in triangle esti-
mation, to decide connections between triangles, to
fill holes, to reject unreliable triangles, to define view
point selection and to reduce model redundancy.

However, these contributions do not go far enough
for non-central camera. The calculation of generic
covariance at point p requires the ray origins corre-
sponding to p. These ray origins are known if the
camera is (approximated by) a central camera, but a
generic method is still needed to obtain ray origins for
a non-central camera. Other limitations are due to
the use of 2D meshes in images: the camera should
not be too exotic to back-project connected image
points (2D triangles) to connected points of the scene
surface. Furthermore, the current implementation of
2D mesh initialization is only done for our cameras.
All these limitations are topics for future research.

Experiments are another contribution of the pa-
per. Our context is useful for applications and has
rarely been addressed until now: the automatic 3D
modeling of scenes using catadioptric cameras. Once
structure-from-motion has estimated camera calibra-
tion and poses from image sequence, the 3D modeling
method based on generic covariance is applied to gen-
erate a global 3D model of the scene. Experiments
illustrate generic covariance properties. They include
accuracy estimation of our catadioptric setup on syn-
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Figure 11: Top view of the structure-from-motion result with some images of the old town.
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Figure 12: Left: top view and height map of the old
town global model. Right: local views (texture and
orientation of triangles).

thetic images, and provide 3D model reconstructions
from real sequences with hundreds of images.

Many improvements are possible: a better use of
visibility in view point selection, applying merging
methods like [4, 32] after view point selection. It is
important to remember that view point selection is
a key issue for 3D modeling, but it can not replace
(and it is not a competing method of) such merging
methods. Lists of local models with different base-
lines would also be useful to increase accuracy. Last,
several steps of the reconstruction method may be im-
proved (image matching, texture merging) and other
steps may be added (mesh simplification, image gain
corrections).

Appendix A: Data for Synthetic

Experiments

This appendix explains how to obtain a realistic non-
central calibration of a catadioptric camera. This is
useful for the synthetic experiments in Section 7.3.
Here we use the 0-360 mirror [1] mounted with the
Nikon Coolpix 8700. Non-central calibration is re-
quired to project the synthetic scene in images by
taking into account ray reflexion on the mirror. It is
defined by the mirror profile and the matrix of the
perspective camera in the coordinate system of the
mirror [18].

First, the mirror profile has to be estimated since
it is not provided by the mirror manufacturer. Profile
z(r) is used by the mirror cylindrical parametrization

f(r, θ) =
(

r cos(θ) r sin(θ) z(r)
)⊤

(99)

and is obtained as follows: (1) select a room with
lighting reduced to a single bulb on the ceiling (2)
put a Cartesian graph paper on the ground such that
the light rays are orthogonal to the paper (3) put
the mirror on the paper such that the mirror symme-
try axis is horizontal and parallel to one of the main
directions of the Cartesian graph paper (4) mark sev-
eral points on the paper at the border of the mirror
shadow and (5) fit polynomial z(r) from these points.
We obtain

z(r) = 0.0186 + 0.06188r + 0.10812r2
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+ 0.0312154r3 with 0 ≤ r ≤ 3.9 cm.(100)

Second, the matrix of the perspective camera is es-
timated. A value of the focal length fp is available
from the EXIF data in the JPEG image returned by
the perspective camera: fp = 7094 pixels. Further-
more, a typical radius of the large circle in catadiop-
tric images is rup = 1128 pixels. Following Section 4.5
of [18], we obtain the z-coordinate of the perspective
camera center on the mirror symmetry axis using
the Thales relation 3.9

z(3.9)+zp
=

rup

fp
. Now, we ob-

tain the perspective camera matrix KpR
⊤
p

(

I3 −tp

)

in the mirror coordinate system: intrinsic parameters
Kp = diag(fp, fp, 1), rotation Rp = I3×3 and perspec-

tive center tp =
(

0 0 −zp

)⊤
with zp = 20.8 cm.

Third, we check the view field defined by these val-
ues. We obtain αup = 37.4 using ray reflection at the
large circle. In practice, the ratio between radii of
small and large circles in the catadioptric image is
equal to 0.18. This ratio and ray reflection at the
small circle imply αdown = 153.0. These angle val-
ues are similar to those of the mirror manufacturer
(αup = 37.5 and αdown = 152.5 degrees).

We also define the 3D registration which maps the
estimated scene reconstruction to scene ground truth.
This is useful since the definition of reconstruction ac-
curacy in Section 7.3 depends on it. This registration
is a similarity transformation defined as follows. Its
Euclidean part maps the local basis of the 2nd pose of
the reconstruction (central camera model) to the lo-
cal basis of the mirror at the 2nd pose of the ground
truth (non-central camera model). Its scale part is
the ratio of trajectory lengths between ground truth
and reconstruction bases.

Appendix B: 2D Mesh

This appendix is a summary of the 2D mesh method
used in Section 5.1. There are three steps.

Mesh Initialization First, a Delaunay triangula-
tion is initialized in the reference image such that the
solid angles of all triangles are roughly the same. This
step is defined as follows for our catadioptric cameras
(the general case has been left out for future work).

We generate a checkerboard such that (1) each cell
is quadrilateral and has two triangles (2) the mesh
resolution is defined by a mean length of cell edges
equal to 8 pixels (3) catadioptric image borders en-
force constrained edges on the Delaunay and enforce
the global shape of the checkerboard. At this point,
cell rows of the checkerboard are concentric rings and
cell columns are radial sections. A modification of the
current mesh is useful to increase the uniformity of
solid angles of triangles: we remove one vertex out of
two at image border neighborhoods to increase the
solid angles of triangles in these areas.

Gradient Edge Integration Second, the gradi-
ent edges are integrated in the mesh by moving mesh
vertices slightly and forcing mesh edges to be con-
strained. We have not taken into account all gradient
edges since the mesh resolution has been previously
fixed. So gradient edges are integrated in a best first
order. A contour is a list of connected pixels which
have maximum local image gradient. The contour
score is equal to the sum of gradient modulus for
all its pixels. We pick the contour with the highest
score, and find the list of closest vertices to its pixels
such that these vertices have not been used before
for any other contour. Then two consecutive vertices
are moved slightly to approximate the contour if the
part of the contour between vertex ends is a segment.
Once all contours have been considered by decreas-
ing score, a completion step is used in order to try
to constrain new mesh edges if they approximate a
contour in their immediate neighborhood.

Mesh Refinement Third, the 2D mesh is refined
by alternating “continuous” operations (move ver-
tices to minimize a global cost combining color vari-
ance in triangles and mesh smoothness) and “dis-
crete” operations (flip edges and merge vertices to
improve aspect ratio of triangles).

The continuous operation is useful for many rea-
sons. First, a few gradient edges may be missed by
the previous step, and minimizing the sum of color
variances for each triangle is an other way to increase
the probability that the gradient edges are on the
mesh edges. Second, the gradient edge integration
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deformed the initial mesh only locally such that the
constraint of a same solid angle for all triangles is
highly violated. Minimizing the mesh smoothness
(sum of squared modulus of an umbrella operator)
is a way to incite incident triangles to have similar
solid angles. Minimizing the mesh smoothness is also
useful to improve triangle aspect ratio and regularize
the minimization of color variance.

The cost function e2d({pv}) is defined by

∑

p∈t∈T

||cp −
∑

p′∈t

cp′

|t| ||
2 + λ

∑

v∈V

||
∑

v′∈Nv

pv − pv′ ||2(101)

and T the list of mesh triangles, |t| the area of tri-
angle t, V the list of mesh vertices, Nv the list of
vertices which are connected to v by a mesh edge.
Color cp at pixel p is RGB, pv is the image location
of vertex v and λ is equal to 1000. The vertex loca-
tions {pv} are the parametrization of e2d, and e2d is
minimized using a descent method. All mesh vertices
are allowed to move in 2D, except vertices which are
incident to a constrained edge (vertices at gradient
edges). The latter are only allowed to move in 1D
along the detected gradient edges. This gives prior-
ity to detected gradient edges over the minimization
of color variance, which may sometimes be contradic-
tory.
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