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s.ust.hkAbstra
tThis paper presents a quasi-dense mat
hing algorithm between images based on mat
hpropagation prin
iple. The algorithm starts from a set of sparse seed mat
hes, thenpropagates to the neighboring pixels by the best-�rst strategy, and produ
es a quasi-dense disparity map. The quasi-dense mat
hing aims at broad modeling and visualizationappli
ations whi
h rely heavily on mat
hing information. Our algorithm is robust toinitial sparse mat
h outliers due to the best-�rst strategy; It is eÆ
ient in time and spa
eas it is only output sensitive; It handles half-o

luded areas be
ause of the simultaneousenfor
ement of newly introdu
ed dis
rete 2D gradient disparity limit and the uniqueness
onstraint. The properties of the algorithm are dis
ussed and empiri
ally demonstrated.The quality of quasi-dense mat
hing are validated through intensive real examples.Key words: quasi-dense mat
hing, stereo vision, image-based modeling and rendering.1 Introdu
tionOne natural approa
h to IBMR (Image-based modeling and rendering) is 
lassi
al 
omputervision based 3D re
onstru
tion with rendering by texture mapping. Arbitrary views of thes
ene 
an be synthesized by reproje
ting the re
onstru
ted 3D model. Typi
al examples ofthis approa
h are [11, 33, 29, 18℄ among others. More re
ent work has shown that multi-imagemat
hing 
onstraints |the fundamental matrix for two views and the trifo
al tensor for three
an be used to synthesize new views without expli
it 3D re
onstru
tion. Laveau and Faugeras[20℄ use fundamental matri
es [41, 42, 10, 16℄ and Avidan and Shashua [2℄ use trifo
al tensorsor 3-view geometry [38, 15, 34℄. These mat
hing tensor methods are essentially equivalent toimpli
it 3D re
onstru
tion methods, and as the expli
it re
onstru
tion methods, they requirerigid 3D s
enes. In 
omputer graphi
s, image-based rendering is often viewed as a problemof interpolation from a 
olle
tion of images, inspired by te
hniques whi
h generate smoothtransitions between referen
e images by simply interpolating ea
h pixel from the �rst to the1



se
ond image value. Chen et al. [7℄ popularized the idea of dire
t pixel by pixel interpolation,however they originally assumed that the pixel 
orresponden
es in the basis images were given,as the basis images were 
omputer rendered. Seitz and Dyer [37℄ investigate view interpolation,but are mainly 
on
erned with physi
ally-valid view generation via re
ti�
ation of a perspe
tiveimage pair following the linear 
ombination method developed for obje
t re
ognition of aÆneimages. Like the re
onstru
tion-based methods, they also aim at rendering rigid s
enes. A moreabstra
t formulation on whi
h a large amount of work has been based [27, 21, 13℄ is light �eldor plenopti
 fun
tion. This models all sets of rays seen from all points, 
onsidering ea
h imageas a set of rays. Image-based rendering is then about re
onstru
ting this plenopti
 fun
tionfrom the available images. The major 
hallenge is to establish pixel 
orresponden
es betweenimages parti
ularly in sparse sampling 
ases.In this paper we des
ribe a new mat
hing algorithm whi
h produ
es a quasi-dense pixelmat
hing between images. Our algorithm is targeted for automati
 image-based renderingappli
ations as the traditional sparse mat
hing is insuÆ
ient and general dense stereo algorithmsare not suÆ
iently robust ex
ept for pre-
alibrated 
ameras in pre-settled environment [29,18℄. The basi
 idea of the new mat
hing algorithm is to start from a set of sparse mat
hesas seed points, then propagate the seed points to neighboring pixels using a region growingte
hnique. The result is a quasi-dense disparity map. Early versions of this work appearedin the 
onferen
e papers [22, 23, 25℄. The paper is organized as follows. Se
tion 2 des
ribesthe motivation and rationale of quasi-dense mat
hing. Se
tion 3 develops the algorithm basedon mat
h propagation. Se
tion 4 dis
usses and empiri
ally demonstrates the ni
e propertiesof the propagation. Se
tion 5 presents the related work. Appli
ation examples are shown inSe
tion 6. Finally, some 
on
luding remarks and future dire
tions are given in Se
tion 7.2 Motivation and rationaleEstablishing 
orresponden
es is one of the fundamental problems of 
omputer vision. Therehas been a great amount of mat
hing algorithms developed in di�erent 
ontexts. Traditionally,abundant work has been devoted to dense mat
hing te
hniques in 
arefully 
alibrated stereo 
ase(e.g. [32, 8, 31, 12, 19, 30, 17, 9, 4℄). Stereo mat
hing algorithms redu
e the sear
h spa
e to 1Dalong epipolar lines, but mismat
hes are still frequent around o

luding and texture-less areas.Dense mat
hing based on opti
al 
ow 
omputation (e.g. [1, 3, 40, 35℄) is restri
ted to 
loserspa
ed images and assumes a smooth and well-behaved intensity fun
tion. Dense mat
hingis generally ill-posed due to the aperture problem and regularization based on smoothness
onstraint is always ne
essary [3℄. It is therefore pra
ti
ally very diÆ
ult to expe
t reliabledense mat
hing. Dense mat
hing is also sometimes unne
essary for view synthesis as dis
ussedby [36℄ for 
omputational eÆ
ien
y: homogeneous areas are diÆ
ult to mat
h, but usually donot 
reate visual artifa
ts if their boundaries are 
orre
tly mat
hed.Re
ently developed sparse mat
hing of interest points [14℄ using robust te
hniques [10,16, 41, 42℄ based on the geometri
 
onstraint en
oded by the fundamental matrix has been2



very su

essful. It is be
oming a standard for 
amera geometry estimation, self-
alibration forboth 
alibrated and un
alibrated images [42, 41℄. However sparse mat
hing is insuÆ
ient forvisualization purpose as it merely 
onsists of a sparsely distributed 
loud.We propose an in between quasi-dense pixel mat
hing approa
h in whi
h dense mat
hes are
omputed where possible, i.e. in suÆ
iently textured areas. The key observation is that sparsemat
hing has been shown to be eÆ
ient due to its highly dis
riminant nature of the points ofinterest [26, 14℄, whi
h are by de�nition the lo
al maxima of auto-
orrelation. Even thoughthey are not lo
al maxima, the neighborhood around the points of interest still shows high auto-
orrelation, i.e. high textureness. Therefore these areas 
ould still be reliably mat
hed as thereare suÆ
ient dis
riminant information in the images. Mat
h propagation takes advantage ofthis observation to densify the mat
hing by expanding the a
tual established sparse mat
hing totheir immediate neighboring areas simultaneously in two images. This prin
iple is similar to aregion-growing segmentation algorithm in an individual image, but with propagation operatingin two images. It is suitable for image-based rendering appli
ation as it densely mat
hes thetextured areas for redu
ing rendering artifa
ts, but avoids 
omputing unreliable uniform ando

luding areas. We believe that quasi-dense mat
hing is the most appropriate 
hoi
e forbroader modeling and visualization appli
ations by �lling the gap between sparse and densemat
hing to over
ome the insuÆ
ien
y of sparse mat
hing for visualization based appli
ationand fragile dense mat
hing. We will �rst develop our quasi-dense mat
hing algorithm based onmat
h propagation, then dis
uss its interesting properties and related work.3 Quasi-Dense Mat
hing by Best-First Propagation3.1 Seed sele
tion and initial mat
hingWe start with a traditional sparse mat
hing algorithm between two images for the points ofinterest dete
ted in ea
h image [41, 42℄. Points of interest are naturally reliable two-dimensionalpoint features [14, 39℄, therefore they 
an handle 
ases of large disparity.The Zero-mean Normalized Cross-Correlation (ZNCC) is used to mat
h points of interestin two images, as it is invariant to lo
al linear radio-metri
 
hanges. The 
orrelation at pointx = (x; y)T with shift � = (�x;�y)T is de�ned to beZNCCx(�) = Pi(I(x+ i)� �I(x))(I 0(x+�+ i)� �I 0(x+�))(Pi(I(x+ i)� �I(x))2Pi(I 0(x+�+ i)� �I 0(x+�))2)1=2where �I(x) and �I 0(x) are the means of pixel luminan
es for the given windows 
entered at x.After the 
orrelation step, a simple 
ross-
onsisten
y 
he
k [12℄ is used to retain a one-to-onemat
hing between two images. The 
ross-
onsisten
y 
he
k 
onsists of 
orrelating pixels of the�rst to the se
ond and inversely by 
orrelating those of the se
ond to the �rst image, only bestmat
hes 
onsistent in both dire
tions are retained. From many examples, we have found thata good 
ompromise is to reje
t de�nitively a mat
h if ZNCC < 0:8 using 11 � 11 windows.The 
hoi
e of the region of interest will be des
ribed in the experiment Se
tion 6.3



3.2 PropagationAll initial 
ross-
he
ked sparse mat
hes are sorted by de
reasing 
orrelation s
ore as seed pointsfor 
on
urrent propagations. At ea
h step, the mat
h (x;x0) 
omposed of two 
orrespondingpixels x and x0 with the best ZNCC s
ore is removed from the 
urrent set of seed mat
hes. Thenwe sear
h for possible new mat
hes in the immediate spatial neighborhood N (x;x0) pre
iselyde�ned below. The ZNCC is still used for mat
h propagation as it is more 
onservative thanothers su
h as sum of absolute or square di�eren
es in uniform regions, and is more tolerantin textured areas where noise is important. We also simultaneously enfor
e a smoothnessmat
hing 
onstraint 
alled \dis
rete 2D disparity gradient limit" pre
isely de�ned below, theuniqueness 
onstraint and a 
on�den
e measure de�ned below on these neighboring pixels to be
onsidered as potential new mat
hes. The mat
hing uniqueness and termination of the pro
essare guaranteed by 
hoosing only new mat
hes that have not yet been sele
ted.Dis
rete 2D disparity gradient limit The usual 1D disparity gradient limit along theepipolar lines has been widely used in re
ti�ed stereo mat
hing for disambiguation [32, 5℄. Wepropose here a 2D extension, the dis
rete 2D disparity gradient limit, to deal with un
alibratedpair of images in
luding rigid s
enes with ina

urate epipolar 
onstraint and non-rigid s
enes.This limit is said to be \dis
rete" be
ause only integer values are allowed for disparities. Thisallows us to impose dire
tly the uniqueness 
onstraint while propagating.Let N (x) = fu;u�x 2 [�N;N ℄2g, N (x0) = fu0;u0�x0 2 [�N;N ℄2g denote all (2N +1)�(2N + 1) neighboring pixels of pixels x and x0. The possible mat
hes limited by the dis
rete2D disparity gradient are given asN (x;x0) = f(u;u0);u 2 N (x);u0 2 N (x0); jj(u0 � u)� (x0 � x)jj1 � �g:and are illustrated in Figure 1 for N = 2; � = 1. Our 
hoi
e is to impose the most 
onservativenon-zero disparity gradient limit, i.e., � = 1 for integer pixel 
oordinates u;u0;x;x0. In the 
aseof re
ti�ed images of a rigid s
ene, the usual 1D gradient disparity limit for two neighboringpixels x and u = x + (1; 0) in the same line is dire
tly dedu
ed from our 2D one: writingdisparities d(x) = x0�x and d(u) = u0�u of mat
hes (x;x0) and (u;u0), we obtain jd(x)�d(x+1)j � 1. The newly introdu
ed dis
rete 2D disparity gradient limit therefore naturally extendthe usual 1D disparity gradient limit for un
alibrated image pairs with ina

urate epipolar
onstraint and for non-rigid s
enes.A minimal size of neighborhood N should be used to limit bad mat
hes at the o

luding
ontours. The smallest neighborhood size that makes sense of the de�nition of gradient limitis therefore N = 2, i.e. the 5� 5 neighborhood.Con�den
e measure There is a wide variety of de�nitions of 
on�den
e measure in the lit-erature and its 
hoi
e depends on the appli
ations. We use a simple di�eren
e-based 
on�den
emeasure as s(x) = maxfjI(x+�)� I(x)j;� 2 f(1; 0); (�1; 0); (0; 1); (0;�1)gg:4
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Figure 1: Possible mat
hes (u;u0) and (v;v0) around a seed mat
h (x;x0) 
ome from its 5� 5-neighbor N (x) and N (x0) as the smallest size for dis
rete 2D disparity gradient limit. Themat
h 
andidates for u (resp. v0) are within the 3� 3 (bla
k framed) 
entered at u0 (resp. v).This is less restri
tive than Morave
 operator [28℄ and allows propagation to walk and mat
halong edges in spite of the aperture problem while avoiding mat
hing uniform areas. We forbidpropagation in too uniform areas with s(u) � t; t = 0:01 assuming that 0 � I(u) � 1. More
onservatives measures su
h as those suggested in opti
al 
ow [3℄ are also possible.3.3 Propagation algorithmThe propagation algorithm 
an be des
ribed as follows. The input of the algorithm is the setSeed of the 
urrent seed mat
hes. The set is implemented with a heap data stru
ture for bothfast sele
tion of the ZNCC-best mat
h and in
remental additions of seeds. The output is aninje
tive displa
ement mapping Map.Input: SeedOutput: MapMap  ;while Seed 6= ; dopull the ZNCC-best mat
h (x;x0) from SeedLo
al  ;(Store in Lo
al new 
andidate mat
hes enfor
ing the disparity gradient limit)for ea
h (u;u0) in N (x;x0) doif s(u)>t and s(u0)>t and ZNCC(u,u')>zthen store (u,u') in Lo
alend-ifend-for(Store in Seed and Map final mat
hes enfor
ing the uniqueness 
onstraint)while Lo
al 6= ;pull the ZNCC-best mat
h (u,u') from Lo
alif (u,*) and (*,u') are not in Mapthen store (u,u') in Map and Seedend-ifend-while 5



end-whileThe parameter values by default of t and � have been suggested when de�ned. The 
omplex-ity of this algorithm in time is O(nlog(n))) with n the �nal number of mat
hed pixels, assumingthat the number of initial seeds is negligible. Our algorithm depends only on the number of�nal mat
hes and is independent of any disparity bound: it is therefore output sensitive. Thememory 
omplexity is linear in the image size.As the sear
h spa
e for potential 
orrespondents for a given pixel redu
es to a very smallregion of 3� 3 as shown in Figure 1, the mat
hing 
riterion is relaxed to a smaller window andweaker 
orrelation s
ore than the seed points. We found by experiments that a reje
tion takespla
e for a mat
h having ZNCC < z; z = 0:5 within a 5�5 window. There are two bene�ts forsmaller ZNCC window size: minor perspe
tive distortions are a

epted and mat
hing artifa
tsare limited around o

luding 
ontours.4 Mat
h propagation propertiesThe mat
h propagation algorithm has many ni
e properties that we examine. For illustra-tive purpose, we use the 1st and 20th frames of the publi
 domain 
ower garden MPEG se-quen
e. This image pair is diÆ
ult for many algorithms as there is a large o

luding tree inthe foreground of the s
ene and disparities might be large. Many mat
hing algorithms pro-du
e high rates of outliers in the half-o

luded area and it is parti
ularly diÆ
ult for Dynami
Programming-like approa
hes as the ordering 
onstraint is not observed.Robustness w.r.t. false seed mat
hes The robustness and stability of this algorithmbased on best-�rst propagation are 
onsiderably improved by the global best-�rst strategyw.r.t. the sparse mat
hing. Though the seed sele
tion step seems very similar to many existingmethods [41, 42℄ for mat
hing points of interest using 
orrelation, the key di�eren
e is that thepropagation 
an rely on only a few most reliable ones rather than taking a maximum of them.This makes the algorithm mu
h less vulnerable to the presen
e of mat
h outliers in the seedsele
tion stage. The risk of bad propagation is signi�
antly diminished for two reasons: thebad seed points have no 
han
e to be developed if they are not ranked on top of the sortedlist; the propagation by bad seed points is stopped very qui
kly due to la
k of 
onsisten
y inits neighborhood even if the bad seed points might o

asionally ranked high in the list. Insome extreme 
ases, only one single good mat
h of points of interest is suÆ
ient to provoke anavalan
he of the whole textured images while keeping all other seeds points in
luding bad onesundeveloped.Figure 2 shows the disparity maps obtained from di�erent sele
tions of seed points to il-lustrate the stability of propagation. The �rst example on the left 
olumn is produ
ed usingautomati
 seed points as sparse mat
hing of points of interest des
ribed above. The set of auto-mati
 seed points still 
ontains mat
h outliers marked as a square instead of a 
ross for a good6



Figure 2: The disparity maps produ
ed by propagation with di�erent seed points and withoutthe epipolar 
onstraint. Left 
olumn: automati
 seed points with the mat
h outliers markedwith a square instead of a 
ross. Middle 
olumn: four seed points manually sele
ted. Right
olumn: four seed points manually sele
ted plus 158 mat
h outliers with strong 
orrelations
ore ZNCC > 0:9).mat
h. The se
ond example in the middle is produ
ed with four seed points, manually sele
tedfrom the set of automati
 seed points. Ea
h seed mat
h is suÆ
ient to provoke an avalan
he of
orre
t mat
hes in ea
h of the four isolated and textured areas. The whole mat
hed areas 
overroughly the same surfa
e as that obtained with the automati
 seeds and 78% of mat
hed areasare 
ommon between the two results. The third example on the right is produ
ed with four seedpoints as in the se
ond example plus 158 more seed points whi
h are all mat
h outliers but stillhave strong 
orrelation s
ore (ZNCC > 0:9). This very severely 
orrupted set of seed pointsstill gives 70% of the mat
hed areas 
ommon to the automati
 
ase. This robust s
enario ofgood seeds developing faster than bad ones is more dominant in mat
hed areas than o

ludedregions.Further we noti
e from these examples that minor geometri
 distortion is well tolerated inthe 
owers thanks to the small 5 � 5 ZNCC-window size during propagation. In the untex-tured sky area, the propagation is stopped by the 
on�den
e measure. The near-periodi
 thinunmat
hed gaps on the trunk illustrate the e�e
t of the uniqueness 
onstraint.Stability in low textured s
enes For low textured images su
h as typi
al polyhedri
 s
enes,one 
ould have expe
ted that the mat
hed areas are to be redu
ed to a small neighborhoodof seeds due to poor textures, but very interestingly, the propagation grows ni
ely along thegradient edges and we may show that the distan
e along edges 
overed by propagation in bothimages is similar if the perspe
tive distortion is moderate. Figure 3 illustrates an interesting
onsequen
e of this property by using two views of a wooden house. A single manually se-le
ted seed propagates globally to the whole images and 
overs the most part of the normally7



Figure 3: Examples of propagation for low textured images. From left to right: (1) two imageswith low geometri
 distortion of a small wood house, (2) the disparity map automati
allyprodu
ed with the epipolar 
onstraint, (3) the disparity map produ
ed by a single manualseed on the bottom without the epipolar 
onstraint, (4) the 
ommon mat
hing areas in bla
kbetween the two maps in (2) and (3).propagated results from many seeds distributed over the whole image. This global stability ofpropagation for low textured images is very good for interpolation or morphing appli
ations.
A B A BC D

View 2View 1

a a
b bFigure 4: Two views of a s
ene with ba
kground A, foreground B and half o

luded areas Cand D. Assume that 
orre
t mat
hes within A and B have better s
ores than bad ones withinC and D. A and B are �rst �lled in by propagation from seed a and b before the algorithmattempts to grow in C or D. On
e A and B are mat
hed, the pro
edure is stopped by theuniqueness 
onstraint at the boundary of C in the �rst view (resp. D in the se
ond view)be
ause the 
orresponding boundary in the se
ond view (resp. the �rst one) en
loses an emptyarea.Handling half-o

luded areas The algorithm provides satisfa
tory results in half-o

ludedareas, mainly due to the simultaneous enfor
ement of the global best-�rst strategy and theuniqueness 
onstraint. The prin
iple 
an be illustrated with the help of Figure 4 in whi
hwe assume a foreground obje
t B over a ba
kground A, and the half-o

luded areas C andD. The global best-�rst propagation strategy �rst a

epts mat
hes with the best 
orrelations
ores before trying the majority of mat
hes with medio
re s
ores. As the foreground A andba
kground B are both visible, it is expe
ted that they are mat
hed before bad mat
hes forpixels in half-o

luded areas C and D are tried. Consequently, the propagation stops in thehalf-o

luded areas be
ause it is always stopped by the uniqueness 
onstraint.We show in Figure 5 that with at least 4 seed points, the disparity maps obtained areex
ellent in handling the o

luded areas. When we remove one important seed point from the8



Figure 5: The disparity maps produ
ed by propagation with di�erent seed points and withoutthe epipolar 
onstraint. Left and Middle 
olumns: four manually sele
ted seed points markedby a 
ross between the 1st and the 20th frame of the 
ower garden. Right 
olumn: remove onemanual seed lo
ated on the front tree. It has more mat
h outliers in the o

luded regions.front tree (whi
h plays the role of region B in Figure 4), the tree is not mat
hed at all asexpe
ted, many mat
h outliers have invaded into the ba
kground area.Another example in
luding half o

luded areas for a thin obje
t is shown in Figure 6: a 2-3pixel width ele
tri
 post and its disparity map by propagation with and without the epipolar
onstraint. These �ne details and their ba
kgrounds have been su

essfully mat
hed. As in theprevious 
ase, the usual fattening artifa
t around the o

luding 
ontours is limited be
ause ofthe small 5� 5 ZNCC-window and lo
al propagation.
Figure 6: Left pair: two sub-images of an ele
tri
 post. Middle and Right pairs: the disparitymaps without (middle) and with (right) the epipolar 
onstraint.5 Related workImposing simultaneous mat
hing 
onstraints Mat
hing 
onstraints [8, 19℄ su
h as unique-ness, limit on disparity, disparity gradient and ordering 
onstraints are always ne
essary to re-du
e mat
hing ambiguity. These 
onstraints are often implemented in stereo algorithms alongthe 
orresponding epipolar lines.Uniqueness 
onstraint is often imposed by 
ross-
onsisten
y 
he
k i.e. by 
orrelating pixels9



of the �rst to the se
ond image and inversely by 
orrelating those of the se
ond to the �rst image;only the best mat
hes 
onsistent in two ways are retained. The error rate by 
ross-
onsisten
y
he
k is low [12℄, but the resulting disparity map is less dense [18℄ unless multiple resolutionsor additional images are used [12℄. An alternative 
onsists of evaluating a set of possible
orrespondents in the se
ond image for ea
h pixel in the �rst image, �nal 
orresponden
es areestablished using relaxation te
hniques like the PMF algorithm [32℄ or sear
hing for disparity
omponents [4℄. However, these methods sequentially impose limits on disparity gradients anduniqueness 
onstraint. In our approa
h we impose them simultaneously. This 
onsiderablyimproves the mat
hing results and allows the eÆ
ient handling of half-o

luded areas. Unlikestereo mat
hing algorithms working along 1D epipolar lines, we extended the de�nition of 1Ddisparity gradient limit to the dis
rete 2D disparity gradient limit whi
h naturally handlesun
alibrated images in
luding rigid s
enes with ina

urate epipolar geometry and non-rigids
enes.Redu
ing sear
h spa
e by adding dire
t limit on disparity greatly improves the performan
eof the majority of existing methods, but the result and 
omplexities of our method are respe
-tively mu
h less sensitive and independent to this 
onstraint.Using a best-�rst mat
h-growing strategy A related region-growing algorithm was pre-viously introdu
ed in the photogrammetry domain by [31℄ with the \Got
ha" (Gruen-Otto-Chau) ALSC|Adaptative Least Square Correlation, algorithm designed to mat
h two SPOTimages. Deformable windows and pat
h-to-pat
h propagation are used instead of the disparity
onstraints and pixel-to-pixel propagation strategy. The main advantage of this approa
h isthat the mat
hing 
an rea
h sub-pixel a

ura
y from ALSC pat
h optimization. However, thispat
h based optimization and propagation are the sour
es of two drawba
ks: �rst, a uniqueness
onstraint 
an no longer be de�ned for the overlapping pat
hes and se
ond, large window sizesthan ours is unavoidable for stable adaptive least squares, espe
ially if gray level distortionsare 
onsidered.Also, the pat
h propagation 
ould not deal with �ne texture details (like ele
tri
 posts) un-less optimization is done for ea
h pixel. The optimization pro
ess su�ers from over-parameterizationwhen gray level distortions are 
onsidered and is hardly workable for mat
hing di�erent s
enes.The most serious short
oming is poor performan
e around o

luding 
ontour points due to la
kof a uniqueness 
onstraint and the larger window size.Independent to our paper [22, 23℄, another pixel-to-pixel propagation presented as volumet-ri
 mat
hing was proposed by [6℄. However, this approa
h does not use the best-�rst strategyand the uniqueness 
onstraint. In addition, the o

lusion problem is ignored and the seedpoints are not lo
alized in the highest texture areas. A progressive s
heme for stereo mat
hingwas also introdu
ed more re
ently by [43℄. It starts from robustly mat
hed interest points [42℄,then densi�es the mat
hing by using a growing prin
iple. It 
onsiders simultaneously multiple
urrent mat
hes and propagates in a larger area instead of one seed mat
h in a very smallprede�ned area in our approa
h. This tends to produ
e smoother disparity map, but more10



outliers for half-o

luded areas. It is also unknown of its performan
e for non-rigid s
enes.6 Appli
ation examplesWe show in this se
tion some appli
ations of 
reating in-between views by interpolation based onthe quasi-dense mat
hing algorithm presented above, with the setting of propagation parametersproposed in Se
tion 3.Triangulating in image planes is always ne
essary not only to remedy mat
hing sparseness,but also primarily to approximate images for rendering eÆ
ien
y. Traditional independentDelaunay triangulation performed on ea
h individual image gives a good approximation wheno

luded areas are negligible in the rendering view-�eld, but be
omes insuÆ
ient when theo

lusions are apparent as illustrated in the garden 
ower sequen
e. To over
ome the shortageof the independent triangulation, a Joint View Triangulation that triangulates simultaneouslytwo images while keeping mat
hing information 
oheren
e in images has been introdu
ed andimplemented [23, 24℄. It is built on the re-sampled quasi-dense mat
hes. Also a pseudo-painter'salgorithm based on the joint view triangulation has also been des
ribed [23℄ to render novelview. It �rst draws unmat
hed triangular pat
hes before mat
hed ones and an heuristi
 drawingorder based on triangle distortion for unmat
hed triangles and the disparity for mat
hed onesis also used. We show four examples of rigid s
enes in Figure 7 and two examples of non-rigids
ene in Figure 8.For all rigid s
enes in Figure 7, the sear
h area for seed mat
hes is big, 40% left and rightand 20% top and bottom of image size. The fundamental matrix is estimated from a �rst andepipolar un
onstrained propagation using robust statisti
s to 
ope with sparse outliers [25, 41,42℄, and a se
ond and epipolar 
onstrained propagation is �nally applied. The rigid s
enesall 
ontain quite important half-o

luded areas. The rendering results are globally 
onvin
ingmainly due to the good behavior of the propagation at o

lusions and the strength of thedisparity gradient limit, though there are still small visible artifa
ts due to �nite approximationof the joint triangulation around the o

luding 
ontours. The third example is the most diÆ
ult,espe
ially on the top left 
orner where the texture drasti
ally 
hanges for di�erent layers ofbran
hes. The 
omputation time for ea
h epipolar 
onstrained propagation are respe
tively of4.3, 8.1, 2.6 and 1.3 se
onds with a Pentium III Mobile 500Mhz to obtain 177000, 168000, 61370and 42835 mat
hes for these examples of image size of 768�512; 768�512; 562�450; 352�240.One example of 
reating novel views by extrapolation is given in the right 
olumn of Figure 7.A 
ir
ular traje
tory 
entered at the middle of both 
amera positions and whose radius is thehalf of the distan
e between two 
amera positions is de�ned for the garden 
ower images. We
an noti
e more geometri
 distortion on rendered images as the 
amera traje
tory deviatesmore from the in-between path.For non rigid obje
ts or s
enes in Figure 8, the sear
h spa
e for seed mat
hes is redu
ed to 5%left, right, top and bottom of image size, instead of the fundamental matrix en
oding the globalrigidity, a 
ompensation 2D translation ve
tor is robustly estimated from the �rst propagation11



Figure 7: Left: Four sequen
es from two images (�rst and last row) 
omposed of three au-tomati
ally generated images. Right: Some extrapolated views of the garden 
ower sequen
ewith a 
ir
ular 
amera traje
tory. 12



with the big sear
h spa
e. We used A
hermann's image database of di�erent fa
es taken undersimilar lighting and pose 
onditions. The eyes, mouth and nose are usually 
orre
tly mat
hedfor the morphing appli
ation, but artifa
ts appears at the hairs and the shoulders when the
hanges are too abrupt. The last example is parti
ularly diÆ
ult be
ause of the big di�eren
ebetween the two fa
es, and its main artifa
ts are lo
alized at the shoulders and the eyebrows onthe left. For theses examples, many uniform areas inside the fa
e silhouette are not mat
hed,but their borders are as the propagation tends to mat
h edges by 
overing the same distan
ein both images. The 
omputation time for ea
h un
onstrained propagation is approximately0.7 se
ond for 512� 342 image to obtain 29296 and 23796 mat
hes.Many other examples have been experimented, in
luding both positive and negative results.We have noti
ed that the most notable mat
hing blunders for image based rendering are due toperiodi
 textures: if a seed mat
h is shifted from some periods, then the resulting propagationhas the same shift. It is expe
ted that these blunders are redu
ed using a more 
onservativemat
hing method for mat
h seeds as the relaxation step proposed by [42℄ for the fundamentalmatrix estimation.

Figure 8: Ea
h row shows four images of an automati
ally generated sequen
e from two fa
esof di�erent persons, using our mat
hing propagation algorithm.
7 Con
lusion and future workWe developed a new quasi-dense mat
hing algorithm based on the best-�rst mat
h propaga-tion strategy. The algorithm has many desirable properties: robustness to initial seed mat
h13



outliers, eÆ
ien
y in time and spa
e, and possibility of handling o

luded areas. We believethat the quasi-dense mat
hing is an intermediate solution between sparse and dense mat
hingappropriate for a broad range modeling and visualization based appli
ations. These propertieshave been empiri
ally demonstrated over various modeling and view synthesis appli
ations fromreal images. We are 
ontinuing work in 3D modeling and rendering quasi-dense models basedon the algorithm presented in this paper.A
knowledgementsWe would like to thank D. Taylor for providing us the images of the man in New York, and B.A
hermann for the fa
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