
Math Propagation for Image-Based Modeling andRenderingMaxime LHUILLIER and Long QUANDepartment of Computer Siene, HKUST, Clear Water Bay, Kowloon, Hong Kongmaxime,quan�s.ust.hkAbstratThis paper presents a quasi-dense mathing algorithm between images based on mathpropagation priniple. The algorithm starts from a set of sparse seed mathes, thenpropagates to the neighboring pixels by the best-�rst strategy, and produes a quasi-dense disparity map. The quasi-dense mathing aims at broad modeling and visualizationappliations whih rely heavily on mathing information. Our algorithm is robust toinitial sparse math outliers due to the best-�rst strategy; It is eÆient in time and spaeas it is only output sensitive; It handles half-oluded areas beause of the simultaneousenforement of newly introdued disrete 2D gradient disparity limit and the uniquenessonstraint. The properties of the algorithm are disussed and empirially demonstrated.The quality of quasi-dense mathing are validated through intensive real examples.Key words: quasi-dense mathing, stereo vision, image-based modeling and rendering.1 IntrodutionOne natural approah to IBMR (Image-based modeling and rendering) is lassial omputervision based 3D reonstrution with rendering by texture mapping. Arbitrary views of thesene an be synthesized by reprojeting the reonstruted 3D model. Typial examples ofthis approah are [11, 33, 29, 18℄ among others. More reent work has shown that multi-imagemathing onstraints |the fundamental matrix for two views and the trifoal tensor for threean be used to synthesize new views without expliit 3D reonstrution. Laveau and Faugeras[20℄ use fundamental matries [41, 42, 10, 16℄ and Avidan and Shashua [2℄ use trifoal tensorsor 3-view geometry [38, 15, 34℄. These mathing tensor methods are essentially equivalent toimpliit 3D reonstrution methods, and as the expliit reonstrution methods, they requirerigid 3D senes. In omputer graphis, image-based rendering is often viewed as a problemof interpolation from a olletion of images, inspired by tehniques whih generate smoothtransitions between referene images by simply interpolating eah pixel from the �rst to the1



seond image value. Chen et al. [7℄ popularized the idea of diret pixel by pixel interpolation,however they originally assumed that the pixel orrespondenes in the basis images were given,as the basis images were omputer rendered. Seitz and Dyer [37℄ investigate view interpolation,but are mainly onerned with physially-valid view generation via reti�ation of a perspetiveimage pair following the linear ombination method developed for objet reognition of aÆneimages. Like the reonstrution-based methods, they also aim at rendering rigid senes. A moreabstrat formulation on whih a large amount of work has been based [27, 21, 13℄ is light �eldor plenopti funtion. This models all sets of rays seen from all points, onsidering eah imageas a set of rays. Image-based rendering is then about reonstruting this plenopti funtionfrom the available images. The major hallenge is to establish pixel orrespondenes betweenimages partiularly in sparse sampling ases.In this paper we desribe a new mathing algorithm whih produes a quasi-dense pixelmathing between images. Our algorithm is targeted for automati image-based renderingappliations as the traditional sparse mathing is insuÆient and general dense stereo algorithmsare not suÆiently robust exept for pre-alibrated ameras in pre-settled environment [29,18℄. The basi idea of the new mathing algorithm is to start from a set of sparse mathesas seed points, then propagate the seed points to neighboring pixels using a region growingtehnique. The result is a quasi-dense disparity map. Early versions of this work appearedin the onferene papers [22, 23, 25℄. The paper is organized as follows. Setion 2 desribesthe motivation and rationale of quasi-dense mathing. Setion 3 develops the algorithm basedon math propagation. Setion 4 disusses and empirially demonstrates the nie propertiesof the propagation. Setion 5 presents the related work. Appliation examples are shown inSetion 6. Finally, some onluding remarks and future diretions are given in Setion 7.2 Motivation and rationaleEstablishing orrespondenes is one of the fundamental problems of omputer vision. Therehas been a great amount of mathing algorithms developed in di�erent ontexts. Traditionally,abundant work has been devoted to dense mathing tehniques in arefully alibrated stereo ase(e.g. [32, 8, 31, 12, 19, 30, 17, 9, 4℄). Stereo mathing algorithms redue the searh spae to 1Dalong epipolar lines, but mismathes are still frequent around oluding and texture-less areas.Dense mathing based on optial ow omputation (e.g. [1, 3, 40, 35℄) is restrited to loserspaed images and assumes a smooth and well-behaved intensity funtion. Dense mathingis generally ill-posed due to the aperture problem and regularization based on smoothnessonstraint is always neessary [3℄. It is therefore pratially very diÆult to expet reliabledense mathing. Dense mathing is also sometimes unneessary for view synthesis as disussedby [36℄ for omputational eÆieny: homogeneous areas are diÆult to math, but usually donot reate visual artifats if their boundaries are orretly mathed.Reently developed sparse mathing of interest points [14℄ using robust tehniques [10,16, 41, 42℄ based on the geometri onstraint enoded by the fundamental matrix has been2



very suessful. It is beoming a standard for amera geometry estimation, self-alibration forboth alibrated and unalibrated images [42, 41℄. However sparse mathing is insuÆient forvisualization purpose as it merely onsists of a sparsely distributed loud.We propose an in between quasi-dense pixel mathing approah in whih dense mathes areomputed where possible, i.e. in suÆiently textured areas. The key observation is that sparsemathing has been shown to be eÆient due to its highly disriminant nature of the points ofinterest [26, 14℄, whih are by de�nition the loal maxima of auto-orrelation. Even thoughthey are not loal maxima, the neighborhood around the points of interest still shows high auto-orrelation, i.e. high textureness. Therefore these areas ould still be reliably mathed as thereare suÆient disriminant information in the images. Math propagation takes advantage ofthis observation to densify the mathing by expanding the atual established sparse mathing totheir immediate neighboring areas simultaneously in two images. This priniple is similar to aregion-growing segmentation algorithm in an individual image, but with propagation operatingin two images. It is suitable for image-based rendering appliation as it densely mathes thetextured areas for reduing rendering artifats, but avoids omputing unreliable uniform andoluding areas. We believe that quasi-dense mathing is the most appropriate hoie forbroader modeling and visualization appliations by �lling the gap between sparse and densemathing to overome the insuÆieny of sparse mathing for visualization based appliationand fragile dense mathing. We will �rst develop our quasi-dense mathing algorithm based onmath propagation, then disuss its interesting properties and related work.3 Quasi-Dense Mathing by Best-First Propagation3.1 Seed seletion and initial mathingWe start with a traditional sparse mathing algorithm between two images for the points ofinterest deteted in eah image [41, 42℄. Points of interest are naturally reliable two-dimensionalpoint features [14, 39℄, therefore they an handle ases of large disparity.The Zero-mean Normalized Cross-Correlation (ZNCC) is used to math points of interestin two images, as it is invariant to loal linear radio-metri hanges. The orrelation at pointx = (x; y)T with shift � = (�x;�y)T is de�ned to beZNCCx(�) = Pi(I(x+ i)� �I(x))(I 0(x+�+ i)� �I 0(x+�))(Pi(I(x+ i)� �I(x))2Pi(I 0(x+�+ i)� �I 0(x+�))2)1=2where �I(x) and �I 0(x) are the means of pixel luminanes for the given windows entered at x.After the orrelation step, a simple ross-onsisteny hek [12℄ is used to retain a one-to-onemathing between two images. The ross-onsisteny hek onsists of orrelating pixels of the�rst to the seond and inversely by orrelating those of the seond to the �rst image, only bestmathes onsistent in both diretions are retained. From many examples, we have found thata good ompromise is to rejet de�nitively a math if ZNCC < 0:8 using 11 � 11 windows.The hoie of the region of interest will be desribed in the experiment Setion 6.3



3.2 PropagationAll initial ross-heked sparse mathes are sorted by dereasing orrelation sore as seed pointsfor onurrent propagations. At eah step, the math (x;x0) omposed of two orrespondingpixels x and x0 with the best ZNCC sore is removed from the urrent set of seed mathes. Thenwe searh for possible new mathes in the immediate spatial neighborhood N (x;x0) preiselyde�ned below. The ZNCC is still used for math propagation as it is more onservative thanothers suh as sum of absolute or square di�erenes in uniform regions, and is more tolerantin textured areas where noise is important. We also simultaneously enfore a smoothnessmathing onstraint alled \disrete 2D disparity gradient limit" preisely de�ned below, theuniqueness onstraint and a on�dene measure de�ned below on these neighboring pixels to beonsidered as potential new mathes. The mathing uniqueness and termination of the proessare guaranteed by hoosing only new mathes that have not yet been seleted.Disrete 2D disparity gradient limit The usual 1D disparity gradient limit along theepipolar lines has been widely used in reti�ed stereo mathing for disambiguation [32, 5℄. Wepropose here a 2D extension, the disrete 2D disparity gradient limit, to deal with unalibratedpair of images inluding rigid senes with inaurate epipolar onstraint and non-rigid senes.This limit is said to be \disrete" beause only integer values are allowed for disparities. Thisallows us to impose diretly the uniqueness onstraint while propagating.Let N (x) = fu;u�x 2 [�N;N ℄2g, N (x0) = fu0;u0�x0 2 [�N;N ℄2g denote all (2N +1)�(2N + 1) neighboring pixels of pixels x and x0. The possible mathes limited by the disrete2D disparity gradient are given asN (x;x0) = f(u;u0);u 2 N (x);u0 2 N (x0); jj(u0 � u)� (x0 � x)jj1 � �g:and are illustrated in Figure 1 for N = 2; � = 1. Our hoie is to impose the most onservativenon-zero disparity gradient limit, i.e., � = 1 for integer pixel oordinates u;u0;x;x0. In the aseof reti�ed images of a rigid sene, the usual 1D gradient disparity limit for two neighboringpixels x and u = x + (1; 0) in the same line is diretly dedued from our 2D one: writingdisparities d(x) = x0�x and d(u) = u0�u of mathes (x;x0) and (u;u0), we obtain jd(x)�d(x+1)j � 1. The newly introdued disrete 2D disparity gradient limit therefore naturally extendthe usual 1D disparity gradient limit for unalibrated image pairs with inaurate epipolaronstraint and for non-rigid senes.A minimal size of neighborhood N should be used to limit bad mathes at the oludingontours. The smallest neighborhood size that makes sense of the de�nition of gradient limitis therefore N = 2, i.e. the 5� 5 neighborhood.Con�dene measure There is a wide variety of de�nitions of on�dene measure in the lit-erature and its hoie depends on the appliations. We use a simple di�erene-based on�denemeasure as s(x) = maxfjI(x+�)� I(x)j;� 2 f(1; 0); (�1; 0); (0; 1); (0;�1)gg:4
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Figure 1: Possible mathes (u;u0) and (v;v0) around a seed math (x;x0) ome from its 5� 5-neighbor N (x) and N (x0) as the smallest size for disrete 2D disparity gradient limit. Themath andidates for u (resp. v0) are within the 3� 3 (blak framed) entered at u0 (resp. v).This is less restritive than Morave operator [28℄ and allows propagation to walk and mathalong edges in spite of the aperture problem while avoiding mathing uniform areas. We forbidpropagation in too uniform areas with s(u) � t; t = 0:01 assuming that 0 � I(u) � 1. Moreonservatives measures suh as those suggested in optial ow [3℄ are also possible.3.3 Propagation algorithmThe propagation algorithm an be desribed as follows. The input of the algorithm is the setSeed of the urrent seed mathes. The set is implemented with a heap data struture for bothfast seletion of the ZNCC-best math and inremental additions of seeds. The output is aninjetive displaement mapping Map.Input: SeedOutput: MapMap  ;while Seed 6= ; dopull the ZNCC-best math (x;x0) from SeedLoal  ;(Store in Loal new andidate mathes enforing the disparity gradient limit)for eah (u;u0) in N (x;x0) doif s(u)>t and s(u0)>t and ZNCC(u,u')>zthen store (u,u') in Loalend-ifend-for(Store in Seed and Map final mathes enforing the uniqueness onstraint)while Loal 6= ;pull the ZNCC-best math (u,u') from Loalif (u,*) and (*,u') are not in Mapthen store (u,u') in Map and Seedend-ifend-while 5



end-whileThe parameter values by default of t and � have been suggested when de�ned. The omplex-ity of this algorithm in time is O(nlog(n))) with n the �nal number of mathed pixels, assumingthat the number of initial seeds is negligible. Our algorithm depends only on the number of�nal mathes and is independent of any disparity bound: it is therefore output sensitive. Thememory omplexity is linear in the image size.As the searh spae for potential orrespondents for a given pixel redues to a very smallregion of 3� 3 as shown in Figure 1, the mathing riterion is relaxed to a smaller window andweaker orrelation sore than the seed points. We found by experiments that a rejetion takesplae for a math having ZNCC < z; z = 0:5 within a 5�5 window. There are two bene�ts forsmaller ZNCC window size: minor perspetive distortions are aepted and mathing artifatsare limited around oluding ontours.4 Math propagation propertiesThe math propagation algorithm has many nie properties that we examine. For illustra-tive purpose, we use the 1st and 20th frames of the publi domain ower garden MPEG se-quene. This image pair is diÆult for many algorithms as there is a large oluding tree inthe foreground of the sene and disparities might be large. Many mathing algorithms pro-due high rates of outliers in the half-oluded area and it is partiularly diÆult for DynamiProgramming-like approahes as the ordering onstraint is not observed.Robustness w.r.t. false seed mathes The robustness and stability of this algorithmbased on best-�rst propagation are onsiderably improved by the global best-�rst strategyw.r.t. the sparse mathing. Though the seed seletion step seems very similar to many existingmethods [41, 42℄ for mathing points of interest using orrelation, the key di�erene is that thepropagation an rely on only a few most reliable ones rather than taking a maximum of them.This makes the algorithm muh less vulnerable to the presene of math outliers in the seedseletion stage. The risk of bad propagation is signi�antly diminished for two reasons: thebad seed points have no hane to be developed if they are not ranked on top of the sortedlist; the propagation by bad seed points is stopped very quikly due to lak of onsisteny inits neighborhood even if the bad seed points might oasionally ranked high in the list. Insome extreme ases, only one single good math of points of interest is suÆient to provoke anavalanhe of the whole textured images while keeping all other seeds points inluding bad onesundeveloped.Figure 2 shows the disparity maps obtained from di�erent seletions of seed points to il-lustrate the stability of propagation. The �rst example on the left olumn is produed usingautomati seed points as sparse mathing of points of interest desribed above. The set of auto-mati seed points still ontains math outliers marked as a square instead of a ross for a good6



Figure 2: The disparity maps produed by propagation with di�erent seed points and withoutthe epipolar onstraint. Left olumn: automati seed points with the math outliers markedwith a square instead of a ross. Middle olumn: four seed points manually seleted. Rightolumn: four seed points manually seleted plus 158 math outliers with strong orrelationsore ZNCC > 0:9).math. The seond example in the middle is produed with four seed points, manually seletedfrom the set of automati seed points. Eah seed math is suÆient to provoke an avalanhe oforret mathes in eah of the four isolated and textured areas. The whole mathed areas overroughly the same surfae as that obtained with the automati seeds and 78% of mathed areasare ommon between the two results. The third example on the right is produed with four seedpoints as in the seond example plus 158 more seed points whih are all math outliers but stillhave strong orrelation sore (ZNCC > 0:9). This very severely orrupted set of seed pointsstill gives 70% of the mathed areas ommon to the automati ase. This robust senario ofgood seeds developing faster than bad ones is more dominant in mathed areas than oludedregions.Further we notie from these examples that minor geometri distortion is well tolerated inthe owers thanks to the small 5 � 5 ZNCC-window size during propagation. In the untex-tured sky area, the propagation is stopped by the on�dene measure. The near-periodi thinunmathed gaps on the trunk illustrate the e�et of the uniqueness onstraint.Stability in low textured senes For low textured images suh as typial polyhedri senes,one ould have expeted that the mathed areas are to be redued to a small neighborhoodof seeds due to poor textures, but very interestingly, the propagation grows niely along thegradient edges and we may show that the distane along edges overed by propagation in bothimages is similar if the perspetive distortion is moderate. Figure 3 illustrates an interestingonsequene of this property by using two views of a wooden house. A single manually se-leted seed propagates globally to the whole images and overs the most part of the normally7



Figure 3: Examples of propagation for low textured images. From left to right: (1) two imageswith low geometri distortion of a small wood house, (2) the disparity map automatiallyprodued with the epipolar onstraint, (3) the disparity map produed by a single manualseed on the bottom without the epipolar onstraint, (4) the ommon mathing areas in blakbetween the two maps in (2) and (3).propagated results from many seeds distributed over the whole image. This global stability ofpropagation for low textured images is very good for interpolation or morphing appliations.
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a a
b bFigure 4: Two views of a sene with bakground A, foreground B and half oluded areas Cand D. Assume that orret mathes within A and B have better sores than bad ones withinC and D. A and B are �rst �lled in by propagation from seed a and b before the algorithmattempts to grow in C or D. One A and B are mathed, the proedure is stopped by theuniqueness onstraint at the boundary of C in the �rst view (resp. D in the seond view)beause the orresponding boundary in the seond view (resp. the �rst one) enloses an emptyarea.Handling half-oluded areas The algorithm provides satisfatory results in half-oludedareas, mainly due to the simultaneous enforement of the global best-�rst strategy and theuniqueness onstraint. The priniple an be illustrated with the help of Figure 4 in whihwe assume a foreground objet B over a bakground A, and the half-oluded areas C andD. The global best-�rst propagation strategy �rst aepts mathes with the best orrelationsores before trying the majority of mathes with mediore sores. As the foreground A andbakground B are both visible, it is expeted that they are mathed before bad mathes forpixels in half-oluded areas C and D are tried. Consequently, the propagation stops in thehalf-oluded areas beause it is always stopped by the uniqueness onstraint.We show in Figure 5 that with at least 4 seed points, the disparity maps obtained areexellent in handling the oluded areas. When we remove one important seed point from the8



Figure 5: The disparity maps produed by propagation with di�erent seed points and withoutthe epipolar onstraint. Left and Middle olumns: four manually seleted seed points markedby a ross between the 1st and the 20th frame of the ower garden. Right olumn: remove onemanual seed loated on the front tree. It has more math outliers in the oluded regions.front tree (whih plays the role of region B in Figure 4), the tree is not mathed at all asexpeted, many math outliers have invaded into the bakground area.Another example inluding half oluded areas for a thin objet is shown in Figure 6: a 2-3pixel width eletri post and its disparity map by propagation with and without the epipolaronstraint. These �ne details and their bakgrounds have been suessfully mathed. As in theprevious ase, the usual fattening artifat around the oluding ontours is limited beause ofthe small 5� 5 ZNCC-window and loal propagation.
Figure 6: Left pair: two sub-images of an eletri post. Middle and Right pairs: the disparitymaps without (middle) and with (right) the epipolar onstraint.5 Related workImposing simultaneous mathing onstraints Mathing onstraints [8, 19℄ suh as unique-ness, limit on disparity, disparity gradient and ordering onstraints are always neessary to re-due mathing ambiguity. These onstraints are often implemented in stereo algorithms alongthe orresponding epipolar lines.Uniqueness onstraint is often imposed by ross-onsisteny hek i.e. by orrelating pixels9



of the �rst to the seond image and inversely by orrelating those of the seond to the �rst image;only the best mathes onsistent in two ways are retained. The error rate by ross-onsistenyhek is low [12℄, but the resulting disparity map is less dense [18℄ unless multiple resolutionsor additional images are used [12℄. An alternative onsists of evaluating a set of possibleorrespondents in the seond image for eah pixel in the �rst image, �nal orrespondenes areestablished using relaxation tehniques like the PMF algorithm [32℄ or searhing for disparityomponents [4℄. However, these methods sequentially impose limits on disparity gradients anduniqueness onstraint. In our approah we impose them simultaneously. This onsiderablyimproves the mathing results and allows the eÆient handling of half-oluded areas. Unlikestereo mathing algorithms working along 1D epipolar lines, we extended the de�nition of 1Ddisparity gradient limit to the disrete 2D disparity gradient limit whih naturally handlesunalibrated images inluding rigid senes with inaurate epipolar geometry and non-rigidsenes.Reduing searh spae by adding diret limit on disparity greatly improves the performaneof the majority of existing methods, but the result and omplexities of our method are respe-tively muh less sensitive and independent to this onstraint.Using a best-�rst math-growing strategy A related region-growing algorithm was pre-viously introdued in the photogrammetry domain by [31℄ with the \Gotha" (Gruen-Otto-Chau) ALSC|Adaptative Least Square Correlation, algorithm designed to math two SPOTimages. Deformable windows and path-to-path propagation are used instead of the disparityonstraints and pixel-to-pixel propagation strategy. The main advantage of this approah isthat the mathing an reah sub-pixel auray from ALSC path optimization. However, thispath based optimization and propagation are the soures of two drawbaks: �rst, a uniquenessonstraint an no longer be de�ned for the overlapping pathes and seond, large window sizesthan ours is unavoidable for stable adaptive least squares, espeially if gray level distortionsare onsidered.Also, the path propagation ould not deal with �ne texture details (like eletri posts) un-less optimization is done for eah pixel. The optimization proess su�ers from over-parameterizationwhen gray level distortions are onsidered and is hardly workable for mathing di�erent senes.The most serious shortoming is poor performane around oluding ontour points due to lakof a uniqueness onstraint and the larger window size.Independent to our paper [22, 23℄, another pixel-to-pixel propagation presented as volumet-ri mathing was proposed by [6℄. However, this approah does not use the best-�rst strategyand the uniqueness onstraint. In addition, the olusion problem is ignored and the seedpoints are not loalized in the highest texture areas. A progressive sheme for stereo mathingwas also introdued more reently by [43℄. It starts from robustly mathed interest points [42℄,then densi�es the mathing by using a growing priniple. It onsiders simultaneously multipleurrent mathes and propagates in a larger area instead of one seed math in a very smallprede�ned area in our approah. This tends to produe smoother disparity map, but more10



outliers for half-oluded areas. It is also unknown of its performane for non-rigid senes.6 Appliation examplesWe show in this setion some appliations of reating in-between views by interpolation based onthe quasi-dense mathing algorithm presented above, with the setting of propagation parametersproposed in Setion 3.Triangulating in image planes is always neessary not only to remedy mathing sparseness,but also primarily to approximate images for rendering eÆieny. Traditional independentDelaunay triangulation performed on eah individual image gives a good approximation whenoluded areas are negligible in the rendering view-�eld, but beomes insuÆient when theolusions are apparent as illustrated in the garden ower sequene. To overome the shortageof the independent triangulation, a Joint View Triangulation that triangulates simultaneouslytwo images while keeping mathing information oherene in images has been introdued andimplemented [23, 24℄. It is built on the re-sampled quasi-dense mathes. Also a pseudo-painter'salgorithm based on the joint view triangulation has also been desribed [23℄ to render novelview. It �rst draws unmathed triangular pathes before mathed ones and an heuristi drawingorder based on triangle distortion for unmathed triangles and the disparity for mathed onesis also used. We show four examples of rigid senes in Figure 7 and two examples of non-rigidsene in Figure 8.For all rigid senes in Figure 7, the searh area for seed mathes is big, 40% left and rightand 20% top and bottom of image size. The fundamental matrix is estimated from a �rst andepipolar unonstrained propagation using robust statistis to ope with sparse outliers [25, 41,42℄, and a seond and epipolar onstrained propagation is �nally applied. The rigid senesall ontain quite important half-oluded areas. The rendering results are globally onviningmainly due to the good behavior of the propagation at olusions and the strength of thedisparity gradient limit, though there are still small visible artifats due to �nite approximationof the joint triangulation around the oluding ontours. The third example is the most diÆult,espeially on the top left orner where the texture drastially hanges for di�erent layers ofbranhes. The omputation time for eah epipolar onstrained propagation are respetively of4.3, 8.1, 2.6 and 1.3 seonds with a Pentium III Mobile 500Mhz to obtain 177000, 168000, 61370and 42835 mathes for these examples of image size of 768�512; 768�512; 562�450; 352�240.One example of reating novel views by extrapolation is given in the right olumn of Figure 7.A irular trajetory entered at the middle of both amera positions and whose radius is thehalf of the distane between two amera positions is de�ned for the garden ower images. Wean notie more geometri distortion on rendered images as the amera trajetory deviatesmore from the in-between path.For non rigid objets or senes in Figure 8, the searh spae for seed mathes is redued to 5%left, right, top and bottom of image size, instead of the fundamental matrix enoding the globalrigidity, a ompensation 2D translation vetor is robustly estimated from the �rst propagation11



Figure 7: Left: Four sequenes from two images (�rst and last row) omposed of three au-tomatially generated images. Right: Some extrapolated views of the garden ower sequenewith a irular amera trajetory. 12



with the big searh spae. We used Ahermann's image database of di�erent faes taken undersimilar lighting and pose onditions. The eyes, mouth and nose are usually orretly mathedfor the morphing appliation, but artifats appears at the hairs and the shoulders when thehanges are too abrupt. The last example is partiularly diÆult beause of the big di�erenebetween the two faes, and its main artifats are loalized at the shoulders and the eyebrows onthe left. For theses examples, many uniform areas inside the fae silhouette are not mathed,but their borders are as the propagation tends to math edges by overing the same distanein both images. The omputation time for eah unonstrained propagation is approximately0.7 seond for 512� 342 image to obtain 29296 and 23796 mathes.Many other examples have been experimented, inluding both positive and negative results.We have notied that the most notable mathing blunders for image based rendering are due toperiodi textures: if a seed math is shifted from some periods, then the resulting propagationhas the same shift. It is expeted that these blunders are redued using a more onservativemathing method for math seeds as the relaxation step proposed by [42℄ for the fundamentalmatrix estimation.

Figure 8: Eah row shows four images of an automatially generated sequene from two faesof di�erent persons, using our mathing propagation algorithm.
7 Conlusion and future workWe developed a new quasi-dense mathing algorithm based on the best-�rst math propaga-tion strategy. The algorithm has many desirable properties: robustness to initial seed math13
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