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Abstract: We describe a simple and e�cient dense matching method based on region
growing techniques, which can be applied to a wide range of globally textured images.
Our method can deal with non-rigid scenes and large camera motions. First a few highly
distinctive features like points or areas are extracted and matched. These initial matches
are then used in a correlation-based region growing step which propagates the matches in
textured and more ambiguous regions of the images. The implementation of the algorithm
is also given and is demonstrated on both synthetic and real image pairs.
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Appariement dense d'images textur�ees

par croissance de r�egions

R�esum�e : Un algorithme simple et rapide d'appariement dense utilisant des techniques
de croissances de r�egions est pr�esent�e. Il s'applique �a une large classe d'images textur�ees:
sc�enes non rigides et grands d�eplacements. L'algorithme se d�ecompose en deux �etapes.
On extrait et apparie d'abord des primitives, points ou r�egions, se distinguant facilement
des autres. Ces premiers appariements sont ensuites utilis�es pour initialiser une �etape de
croissance de r�egions appari�ees. Cette propagation d'appariements dans les zones textur�ees
permet de construire, par continuit�e, les zones di�ciles �a apparier �a partir de zones voisines
plus facilement appariables. On d�ecrit l'impl�ementation de l'algorithme, puis des tests sur
des images synth�etiques et r�eelles sont propos�es.

Mots-cl�e : Appariement dense, Croissance de r�egions, Corr�elation
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1 Introduction

Many algorithms have been proposed for dense matching. One popular approach is based on
correlation, however this kind of algorithm is generally limited to relatively small disparity,
hence small camera motion. For stereo images [DA89], [Kos93] whose epipolar geometry
is known a priori, the search space can be reduced to a 1D along epipolar lines. Images
recti�cation is usually used to accelerate the dense matching process, but does not allow
zooming in/out of the camera.

Another approach is optical 
ow [BFB94], which handles non-rigid scenes but is limited
to smaller displacements. Di�erential techniques give accurate estimation of displacements
for smooth images, but fail for textured images and at depth discontinuities. Area-based
matching techniques are fast, but do not perform well for sub-pixel displacements or dila-
tions.

Occlusions are one of the major sources for wrong matches. Most of the recent stereo
and optical 
ow work consists of incremental improvements to existing methods, to increase
speed, accuracy or reliability. Only a few authors directly treat large occlusion stereo [IB94].
Hierarchical methods seem to be necessary to treat large disparity range. However, coarse-
to-�ne strategies might miss some texture details and fail at depth discontinuities.

Our algorithm uses mainly region growing techniques. Region growing is a classic ap-
proach for segmentation [HS85], [Mon87], [AB94], and �nding shapes [Bra93]. It is also well
adapted to semi-interactive image processing applications [AB94] (Interactive process are
unavoidable for real applications, although we will only discuss fully automatic techniques
here). In its simplest sense, region growing is the process of merging neighboring points (or
collections of points) into larger regions based on homogeneity properties (cf. [HS85]).

Matching by region growing, or in other words dense matching propagation, is implicitly
used in regularization (�ll the gaps in disparity map from neighboring matches) and optical

ow techniques [BFB94] (by iterative algorithms of global cost minimization). An explicit
region growing method is introduced in the photogrammetry domain by [OC89] with the
\Gotcha" (Gruen-Otto-Chau) ALSC (Adaptative Least Square Correlation) algorithm. It
starts with approximate patch matches between two SPOT satellite images and re�nes them.
Their recovered distortion parameters are used to predict approximate matches for new
patches in the neighborhood of the �rst match. Then, these patch matches are re�ned and
so on. Complements for building extraction are discussed in the same domain by [KM96]:
a pyramidal algorithm to produce seed matches and extraction of linear elements to remove
possible blunders are proposed. Like Iterated Closest Point (ICP) methods for registration of
3D shapes [BM92], dense matching based on region growing combines a best �rst searching
strategy and propagation to neighborhood.

Our main assumption is that the scene is globally textured like many outdoor scenes.
Non-rigid scenes and large displacements are allowed. Our computation time is fast without
image recti�cation, therefore camera zooming in/out is allowed.

Our algorithm has two main steps. The �rst step extracts and matches a sparse set of
highly distinctive features (unlike to [KM96]): seed points and seed areas. Seed points are
points of interest and are matched by correlation. If the scene is rigid, a robust technique to
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4 Maxime Lhuillier

match points of interest through the recovery of the unknown epipolar geometry [ZDFL94]
could be used. Seed areas complete these matches in the most uniform colored areas. We
extract and match them by simultaneously matching and region growing in the most uniform
colored areas of the images.

The second step uses these initial matches to seed a dense matching propagation, using
a best �rst matching strategy. This extends the matches to include the textured areas of
the image. If the scene is rigid, we can use the epipolar geometry obtained in the �rst step
to constrain the propagation in the second step. Our pixel-to-pixels propagation deals with
�ne texture details, and stops just at the occlusion borders if they are enough textured. The
result is a pixelic matching, but it needs less calculations than patch-to-patches propagation
and distortion parameter estimations like [OC89].

The report is organized as follows. The two steps of the dense matching algorithm are
respectively described in Sections 2 and 3. Quantitative results on synthetic distortions and
qualitative results on real image pairs are presented in Section 4. Section 5 summarizes the
work, discusses its advantages and limitations and suggests some future directions.

2 Initial Matching

In this section, we show how to produce a set of initial candidate matches. We �rst justify
the choice of seed points and seed areas. Secondly, we explain how to compare seed areas,
and �nally describe their matching and their region growing-based extraction.

2.1 Which features to choose ?

Matching points of interest is now a robust process, as demonstrated for example in [ZDFL94].
First, these points are extracted and matched with correlation. Because of noise and nearly
repetitive patterns, a relaxation step and next a robust estimate of epipolar geometry seem
to be necessary to produce reliable matches. However, a set of candidate point matches
obtained by simple correlation could be su�cient to seed concurrent propagations.

Matching edge segments is well adapted for polyedric and low textured scenes. It is
di�cult to extract and match salient matches of edge segments in our case, because of our
assumption of textured scenes.

Finally, it is known that segmentation is an instable process. Nevertheless, we need only
to extract some initial seed area matches. A process will be described above which produces
some reliable matches of the most uniform colored areas of the images. The simultaneous
use of shape and mean color comparisons between some isolated and uniform colored regions
in the globally textured images is su�cient to produce candidate seed area matches.

We use then seed areas and seed points. Such seed features could only be matched in
weak distortion areas between the two images. Dense matching propagation will extend
matching to more di�cult and distorted regions to match. If the scene is rigid, the epipolar
geometry is recovered while matching seed points.

INRIA
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2.2 How to Compare Two Seed Areas ?

First, seed areas will not usually be distinguishable if their area are too small (unless their
colors are rare or their neighborhoods are very di�erent, but this case is not considered
here). On the other hand, areas which are too large are subject to signi�cant perspective
and segmentation distortions. So we limit the minimum and maximum sizes of our seed
areas. In practice, it turns out that the same interval of allowed values is su�cient for many
di�erent types of images. The range interval is 100 to 2000 pixels for all our tests.

Two areas A and B are compared very simply by their mean color and their shape (see
Figure 1):

View 1 View 2

A
B

a b

: t(A)-B

: B-t(A)

t(a)=b

We want to compare areas A of view 1 and area B of view 2. Let a (resp. b) be the centroid
of A (resp. B). Our simple shape-based criterion is the quotient of the gray surfaces by
A’s surface plus B’s.

B

t(A)

Figure 1: Comparison of two shapes.

c(A;B) =
jt(A)�Bj+ jB � t(A)j

jAj+ jBj

where jAj is the area of A, \-" indicates set di�erence, and t is the translation from A's
centroid to B's. Areas are easily discriminated by their colors and forms, and c allows for
a little perspective distortion or initial segmentation error. Other measures could be used,
such as the generalized Hausdor� measure [HJ95] or moments [BS97], but the two simple
measures above have proved adequate in our experiments.

2.3 Extract Candidate Matches for Seed Areas

The �rst stage of our algorithm is an alternate sequence of region growing and matching
steps for seed areas.

At the beginning, each pixel forms a separate region. During a growing step, for each
connected 2� 2 pixels block of pixels in the images, their regions are merged if their color
di�erence is less than a threshold (see examples in Figure 2). The threshold is the same for
all blocks, but increases between growing steps.
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6 Maxime Lhuillier

During a matching step, each region of the �rst image is compared to each region of the
second using the above criteria: candidate matches are accepted if both of their areas are
within the thresholds and their mean color and shape di�erences are small.

Each little square is a pixel. The big square is the selected 2*2 block of pixel for a merge process. The difference between the max and min 
colors values of its pixel is bounded by the upper threshold mentioned in the text. The last merge is the fusion of two different region and a
individual pixel.

Figure 2: Tree successive pixel or region merges using most uniform colored 2 � 2 pixels
block.

The algorithm is run several times at di�erent color uniformity levels for two reasons.
Firstly, region growing is not strictly identical in the two images because of noise and pers-
pective distortion: successive tests are necessary to ensure good matches. Secondly, it allows
the same interval of tested thresholds to handle many di�erent types of views.

3 Dense Matching Propagation

We have described the �rst step of our algorithm in the previous section. A method to
obtain seed point matches was cited. An algorithm was also proposed to obtain seed area
matches. The second step is now described. We �rst justify the choice of the dense matching
propagation strategy; then we give the principle of the algorithm; �nally the algorithm and
some implementation details are given. For clarity, the exact link between the �rst and the
second step is explicited in the last part of this section.

3.1 Why Dense Matching Propagation ?

Our goal is dense matching for textured, non di�erentiable and noisy images. We choose
a correlation-based method because it is simple and fast. Correlation is less sensitive to
geometric distortion if small windows are used. However, matching with small windows
can be ambiguous with nearly periodic textures such as those of outdoor scenes. Thus, a
strength constraint is needed for reliable matching. We use the continuity constraint: except
for some pixels on the object boundaries, the disparity must vary smoothly. Dense matching

INRIA
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propagation is a simple and e�ective way to use this constraint: the propagation moves from
less ambiguous matches to more ambiguous ones.

3.2 Principle

A disparity map Map stores the region of correct pixel matches. The algorithm consists
of growing this region. Let Start be a set of active pixel matches near its boundaries.
At each step we remove the best match m from set Start. Match m is the seed for a local
propagation: new matches in the neighborhood ofm (see Figure 3) are added simultaneously
to set Start and map Map. New matches (a; b) are added only if neither pixel a nor b are
already matched in Map.

a A

Neighborhood of pixel a in view 1 Neighborhood of pixel A in view 2

b B

c C

The neighborhood of a match (a,A) is a set of matchs included
in the two 25-neighborhood of a and A. Possible correspondants

of b (resp C) are in the black frame centered at B (resp c).

Figure 3: De�nition of a match neighborhood.

Notice that:

� The set Start is always included in the region of correct matches in Map and initial
content of Start.

� The unicity constraint is guaranteed in Map by our choice of new matches. Thus, the
number of steps and size of set Start are bounded by the sum of the size of Start's
initial content and the area of the image.

� Choosing only one match in the neighborhood of m is inadequate. It does not produce
a real 2D propagation, because size of set Start can not increase and so can not contain
the whole boundaries of region in Map in progress.

� The risk of bad propagation is reduced by the choice of the best match m of set Start.

Furthermore, the more textured the image, the lower the risk of bad propagation. We
reduce the risk by forbidding local propagation in regions which are too smooth.

RR n�3382



8 Maxime Lhuillier

Propagation is begun by initializing set Start as mentioned in Section 3.4. Propagation
is stopped by image borders, too smooth regions and already matched areas. Occlusion
contours stop it too, if they separate two di�erent textures. If yes, they are included in bor-
ders of a �nished propagation in one of the image. Di�cult occlusions for others algorithms
could so easily be localized with our algorithm.

3.3 Implementation and Algorithm

Disparity map Map is bidirectional and injective. We use a heap [Mon87] for the set Start
to store the potential seeds for local propagations and to select the best at each step. The
complexity of propagation is then Knlog(n), where n is the area of the image and K a
constant. Notice that it is independent of any disparity bound, and that K is well known
small. Let Local be a small auxiliary heap of pixel matches.

If a is a pixel, let Nx(a) be the x � x window centered at pixel a. Let s(a) be some
estimate of the color roughness in N3(a) and s0 be a lower threshold. We use s() to forbid
propagation into insu�ciently textured areas fa; s(a) < s0g.

Let d(a; b) be a measure of the image intensity/color di�erence between N3(a) and N3(b),

and value d0 be an upper threshold. The ratio r(a; b) = min(s(a);s(b))
d(a;b) is used as a measure

of reliability for pixel match (a; b). Matches with the best (the uppest) reliabilities are �rst
considered.

Let (ra; ga; ba); 0 � ra; ga; ba < 1 be the color of a pixel a. We use the following de�ni-
tions:

n(a; b) = :299jra � rbj+ :587jga � gbj+ :114jba � bbj

d(a; b) =
1

9

X

�2f�1;0;1g�f�1;0;1g

n(a+ �; b+ �)

d0 = 0:07

s(a) = maxfn(a; b); b� a 2 f(1; 0); (�1; 0); (0; 1); (0;�1)gg

s0 = 0:04

r(a; b) =
minfs(a); s(b)g

d(a; b)
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The algorithm is

// First, initialize Start as mentioned in the next paragraph.
//Next, propagate:
Local ;
while Start 6= ; do
. pull from Start the match (a; b) which maximizes reliability r(a; b)
. // Store in Local the potential matches of local propagation:
. for each (c; d) in f(c; d); c 2 N5(a); d 2 N5(b); (d� b)� (c� a) 2 f�1; 0; 1g� f�1; 0; 1gg do
. . if s(c) > s0 and s(d) > s0 and d(c; d) < d0 // and possibles others constraints
. . then store match (c; d) in the heap Local

. . end if

. end do

. // Store in Start and Map consistent matches of Local:

. while Local 6= ; do

. . pull from Local the match (c; d) which maximizes r(c; d)

. . if c and d are not already stored in the disparity map Map then

. . store match (c; d) in the disparity map Map

. . store match (c; d) in the heap Start

. . end if

. end do
end do

If the scene is rigid, we add the epipolar constraint for match (c; d) in the line
if s(c) > s0 and s(d) > s0 and d(c; d) < d0 .

3.4 Link between the First and Second Step

The two steps were described in the previous sections. The �rst step produces candidate
matches of seed points and seed areas, which are accurate up to a few pixels. The second
step needs new candidate pixel matches with pixel accuracy.

If a seed point match is accurate about some pixels, it is a good trick to convert it to a
set of concurrent, candidate pixel matches of its neighborhood. Best matches will be �rst
selected, and a single good one is su�cient to provoke an avalanche of correct matches in
the second step.

Seed area match (A;B) is converted to concurrent, candidate pixel matches in set Start
with the simple process below, where tAB (resp. tBA) is the translation vector which maps
A's centroid to B's (resp. B's to A's).

for each pixel a of A's boundaries do
store candidate match (a; tAB(a)) in the set Start

end do
for each pixel b of B's boundaries do

RR n�3382



10 Maxime Lhuillier

store candidate match (tBA(b); b) in the set Start
end do

These candidate matches of boundary pixels have proved adequate in our experiments to
start a matching avalanche e�ect.

We combine the two steps using two possible strategies.

� All candidate matches start simultaneously concurrent propagations.

� Propagations are done one by one, best initial match �rst. A homogeneous reliability
measure for seed point and seed area matches could be de�ned by the score of a �rst
and bounded propagation.

Results are presented for the �rst strategy.

4 Experimental Results

Quantitative results on synthetic distortions and qualitative results on real image pairs are
now discussed. It should be stressed that the same parameter values introduced in the
various steps of the algorithm were used for all of the tests.

4.1 Visualizing Arbitrary Dense Matching with a Checker-Board

Since we test on non stereo pairs, disparity can not always be interpreted as depth, and it
might also be large. Depth maps or displacement �elds are not well adapted to display the
results. We designed a global way to visualize dense matches for arbitrary images as follows.
Pixels of the �rst image are colored with a gray-black checker-board. For each matched pixel
of this image, we color the corresponding pixel of the second image with the same color.
This makes it easy to visualize the match of each square and its distortion. A best way for
color displays consists to blend a red-blue checked board with the original images.

4.2 Synthetic Distortions

Portions of variable textures from real outdoor images are collected to create image I0
(see Figure 4). A second image I1 is obtained from I0 by translating the previous texture
portions. Matchings between I1 and f(I0) are now evaluated for some synthetic distortions
f . The background is changed to forbid boundaries of textures portions to help propagation.

4.2.1 Measures

We evaluate coverage and accuracy of the dense matching propagation. For each texture
and distortion f the following numbers are now evaluated:

INRIA
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� S is the maximum percentage of matching coverage surface de�ned by the lower
threshold value s0. Remember that propagation is only allowed for pixels a of area
fa; s0 < s(a)g.

� C is the percentage of matching coverage surface obtained (we have C < S).

� E1 (resp. E2 and E3) is the percentage of pixel matches, such that their matching
error is less than 1 pixel (resp. 2 and 3 pixels).

The matching error of a pixel match (a; b) is de�ned by

err(a; b) = max(jb� f(a)j; ja� f�1(b)j)

where j:j is the Euclidean norm of the plane.

4.2.2 Evaluations

Propagation is initialized in each couple of texture portions by a single seed point match
at their centers. Figure 6 (resp. 7) shows S, C, E1, E2, E3 values for each texture and for
successive 5, 10, 20, 30 degree rotations (resp. 5, 10, 20, 30 % reductions). Figures 8 and 9
show the resulting distortions.

First, our visual matching checker-board suggests that the majority of the matches are
good. One seed match su�ces in majority of cases to propagate matching in the whole
texture portion. Owing to the small correlation windows used, the most textured portions
are matched for large distortions.

The larger distortion is, the lower matching coverage C is. Thus, the percentage of good
matches is usually high. More than 90 % of pixel matches have less than 1 pixel error for
5, 10 degree rotations and 5, 10 % reductions, about 90 % of pixel matches have less than
2 pixels error for 20 degree rotation or 20% reduction.

Banana texture is too smooth for s0 value and is never matched. Grass1 texture contains
low and dense details. Then, Grass1 texture is subject to bad propagation (see 30% reduc-
tion). However, about 90 % of pixel matches have less than 1 pixel error for 5, 10 degree
rotations and 5, 10 % reductions (with matching coverage 45 � C � 50). Bough0 texture
contains strong details. Then, bad propagations are limited (see 30 degree rotation and 30%
reductions). Like some real image pairs, Bough0 texture shows matching periodic holes (see
5, 10 degree rotations and 5, 10 % reductions) dues to image discretization and uniform
distortions.

4.2.3 Automatic Seeding

The goal of this paragraph is to show that correlation of points of interest is su�cient to
produce good seed point matches. The test pair has very large disparities: images I1 is
matched with a 10 degree rotation of I0 (see Figure 5). Each texture portion forms an
isolated region: a portion is matched only if it contains a good seed point match. The
results for matched portions are similar to previous ones.

RR n�3382
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a b c d e

f g h i

j k l

m n o

p q

r

Image I0

Image I1
r

q p

o n m

l k j

i h g f

e d c b a

a   Banana
b   Apple
c   Orange
d   Fine Gravel
e   Grass0
f    Foliage1
g   Wall0
h    Foliage0   
i    Wall1

j     Foliage3    
k    Bough1
l     Grass1
m   Folliage2
n    Folliage4    
o    Rock1
p    Rock0
q    Bough0
r     Grass-Foliage

Figure 4: Textures for Tests.
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The propagation result : texture portions without
good seed point matches are not matched.

164 seed points matches (usually only one good
seed point match per texture portion suffices).

Figure 5: Automatic seeding.

4.3 Real image pairs

The �rst scene is a textured rivulet (see Figure 11). Colored Image dimensions are 512�768.
The following table summarizes the process and times on a Ultra SPARC 1, 300Mhz:

Operations Times Results
Detect Harris points and correlation 5s 151 Seed point matches

Extract and match most uniform regions 14s 408 Seed area matches
Dense Matching Propagation 19s 238460 Pixel matches

The same detection and correlation as [ZDFL94] are used, but without relaxation or
epipolar constraint. All seeds start concurrent propagation. Further, the dense matching
propagation does not use epipolar constraint.

We show 6 images in Figure 11: the initial pair, the matched seed points and seed areas,
and the dense matching propagation result. It should be noted that the initial pair is blurred
on right down corner. Our visual \matching checker-board" suggests that the majority of
the matches are good. Some seed matches are bad: the resulting propagations stop quickly
thanks to good textures (see the small and isolated propagations near the border of the �rst
image result).

Only a few seed matches are su�cient for highly textured scenes. We manually set 8
seed points matches and show propagation result in Figure 10. Manual correspondences are
accurate to about 1-2 pixels. Only one seed match su�ces to �ll the majority of matching
coverage (the background). However, more seed matches are necessary to obtain a similar
result in the blurred region than the automatic seeding.

The second scene \street" is well textured too (cf. Figure 12). Results are obtained in
the same conditions, and the majority of matches seems good without epipolar constraint.
Tests on many others textured image pairs have also been successful.

RR n�3382



14 Maxime Lhuillier

S C E1 E2 E3 S C E1 E2 E3 S C E1 E2 E3 S C E1 E2 E3
Bough0 83 46 89 97 99 83 40 86 96 98 83 0 0 0 0 83 0 0 1 11
Grass0 98 84 97 99 99 98 82 96 99 99 98 79 85 96 99 98 73 52 69 78
Foliage0 99 70 98 99 99 99 65 97 99 99 99 51 90 97 99 99 35 67 84 92
Orange 76 54 93 98 99 76 53 91 98 99 76 50 76 91 96 76 46 35 51 61
Apple 35 6 91 97 98 35 0 53 69 84 35 0 50 75 87 35 0 71 71 71
Banana 31 0 0 0 0 31 0 0 0 0 31 0 0 0 0 31 0 0 0 0

Grass-Foliage 98 86 97 99 99 98 83 96 99 99 98 79 87 97 99 98 72 63 80 89
Wall0 97 81 96 99 99 97 80 95 99 99 97 73 87 97 99 97 66 67 87 94
Wall1 79 64 94 99 99 79 61 91 98 99 79 58 80 95 98 79 51 54 77 87

Fine Gravel 99 86 97 99 99 99 84 95 97 98 99 81 86 95 98 99 73 54 69 79
Rock0 98 87 97 99 99 98 85 95 99 99 98 80 86 96 99 98 73 62 81 90
Rock1 91 78 95 99 99 91 76 93 99 99 91 72 83 96 99 91 66 58 80 90
Bough1 70 51 83 94 98 70 47 76 90 94 70 35 56 77 87 70 5 31 53 65
Foliage1 98 85 97 99 99 98 83 96 99 99 98 77 88 96 99 98 70 60 78 87
Foliage2 98 80 98 99 99 98 79 95 98 98 98 68 90 98 99 98 56 72 88 94
Foliage3 93 77 96 99 99 93 75 93 99 99 93 70 85 97 99 93 62 67 88 95
Grass1 81 50 94 98 99 81 48 92 98 99 81 44 75 87 93 81 35 16 24 29
Foliage4 94 82 96 99 99 94 81 93 98 99 94 79 84 96 99 94 76 62 82 92

Figure 6: Matching coverages and accuracies for 5,10,20,30 degree rotations

S C E1 E2 E3 S C E1 E2 E3 S C E1 E2 E3 S C E1 E2 E3
Bough0 83 45 88 97 99 83 40 82 94 98 83 17 67 86 93 83 0 47 67 83
Grass0 98 77 96 99 99 98 69 91 98 99 98 55 73 91 98 98 42 35 58 74
Foliage0 99 66 97 99 99 99 57 95 99 99 99 41 87 97 99 99 24 60 79 89
Orange 76 52 93 99 99 76 46 87 97 99 76 40 56 79 90 76 30 7 16 23
Apple 35 8 88 96 98 35 6 85 95 99 35 8 60 84 94 35 7 8 16 27
Banana 31 1 0 0 0 31 0 0 0 0 31 0 0 0 0 31 0 0 0 0

Grass-Foliage 98 79 96 99 99 98 72 94 99 99 98 56 78 94 99 98 42 49 71 82
Wall0 97 77 95 99 99 97 69 93 99 99 97 55 80 96 99 97 41 57 84 94
Wall1 79 61 92 98 99 79 55 87 97 99 79 46 68 89 96 79 35 38 60 74

Fine Gravel 99 80 97 99 99 99 72 94 98 99 99 57 76 92 98 99 43 40 62 77
Rock0 98 81 96 99 99 98 73 92 98 99 98 58 77 95 99 98 44 49 76 89
Rock1 91 72 93 99 99 91 66 90 98 99 91 53 71 92 98 91 40 44 72 87
Bough1 70 50 76 89 95 70 45 72 89 96 70 32 50 69 79 70 10 13 23 31
Foliage1 98 79 96 99 99 98 71 95 99 99 98 55 80 95 99 98 41 49 72 85
Foliage2 98 76 96 99 99 98 68 95 99 99 98 53 85 96 98 98 36 68 90 96
Foliage3 93 73 94 99 99 93 66 91 98 99 93 53 77 95 99 93 39 53 81 92
Grass1 81 49 93 98 99 81 45 86 96 99 81 38 53 77 91 81 27 1 4 7
Foliage4 94 76 95 99 99 94 70 92 98 99 94 56 70 92 98 94 44 37 65 80

Figure 7: Matching coverages and accuracies for 5,10,20,30 % reductions
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Figure 8: Matching for 5, 10, 20, 30, degree rotations.
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16 Maxime Lhuillier

Figure 9: Matching for 5, 10, 20, 30 % reductions.
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Figure 10: The result for \rivulet" image pair (some manual seed points).

We show �nally the result for the less textured scene \bowl" (cf. Figure 13). Two
propagations are then tested with lower roughness limits (s0 = 0:02 and s0 = 0:01) to
obtain more matches. Since less texture information is available, the recovered epipolar
constraint is needed to limit bad propagations. Only contours and well textured areas are
matched for s0 = 0:02. Good results are obtained for the whole bowl for s0 = 0:01. Indeed,
propagation comes from textured borders of fruits to less textured areas inside. However,
the majority of matches are bad for the table.

5 Conclusion

A new method has been proposed for dense matching two textured images. The algorithm
has two main steps. First, we extract and match the most uniform colored areas and interest
points. Then, a correlation-based match propagation is started from these seeds, to produce
a dense matching covering all su�ciently textured areas of the images. We have successfully
tested the algorithm on textured images with large displacements and distortions. Rigidity
constraint is not indispensable for su�ciently textured scenes. However, our method is not
suitable for non-textured images like indoor scenes and manufactured objects: the dense
matching propagation is immediately stopped.

If an initially matched seed is false and its neighborhood was little textured, the resulting
propagation may not stop quickly. Such cases could be detected by limiting the global
deformation allowed between the two images. Other constraints could also be introduced to
avoid it too, such as matching compactness.
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Figure 11: The result for \rivulet" image pair (automatic seeding).
INRIA
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Figure 12: The result for \street" image pair.
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Figure 13: The result for \bowl" image pair.
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