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Abstract: Image-based rendering o�ers the advantage of being able to provide realistic
output and at the same time to avoid the di�cult problem of a complete geometric and
photometric modeling of the real world. The method described here is able to deal with non
rigid scenes and large camera motions.

We present in this report a three step algorithm for the interpolation of two views of
a scene, from which we can for instance simulated a camera motion withing the given
scene. The �rst step establishes pixel correspondences between the images and is the most
di�cult part. We justify the choice of region-growing based dense matching methods and we
summarize their principle. Secondly, a robust algorithm converts these pixel correspondences
to an adequate structure for the last step: image interpolation. This structure encompasses
the transformation between the images using constrained and dependent triangulations in
both of them, and handles the half-occluded areas. The implementation of the whole process
is outlined and the process is demonstrated on real images.
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Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
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Vers l'interpolation automatique de paires d'images

r�eelles et distantes

R�esum�e : Utiliser des images r�eelles pour rendre des images de synth�ese o�re l'avantage de
contourner le di�cile probl�eme d'une mod�elisation g�eom�etrique et photom�etrique compl�ete
du monde r�eel. Ce rapport entre dans cette cat�egorie: il propose un algorithme d'interpolation
de deux vues d'une même sc�ene permettant ainsi des animations permettant par exemple de
simuler des mouvements de cam�eras. Cet algorithme peut traiter les sc�enes rigides ou non
ainsi que les grand d�eplacements de cam�eras. L'algorithme se d�ecompose en trois �etapes.
La premi�ere �etape est la plus di�cile : il s'agit de d�e�nir les correspondances entre les pixels
des deux images. Nous justi�ons le choix d'algorithmes d'appariements denses bas�es sur la
croissance de r�egions et leur principe est r�esum�e. Pendant la seconde �etape, un algorithme
robuste convertit ces correspondances en une structure adapt�ee �a la troisi�eme et derni�ere
�etape qu'est l'interpolation d'images. Cette structure d�ecrit la transformation entre les deux
images �a l'aide de triangulations contraintes et d�ependantes dans chacune d'elles, en tenant
compte des zones partiellement occult�ees. L'impl�ementation de l'algorithme complet est
d�ecrite et des tests sur des images r�eelles sont �nalement propos�es.

Mots-cl�e : Appariement, Corr�elation, Croissance de r�egion, Triangulation de Delaunay
Contrainte, Visibilit�e, Interpolation, Morphing, Rendu Bas�e Image
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1 Introduction

Many methods have been proposed for view synthesis from real views. Their interest is to
directly use informations from the real world in order to obtain photo-realistic results. Thus
it avoids the di�cult problem of a complete geometric and photometric modeling.

The �rst way to achieve this was proposed by the photogrammetry/vision �elds: the goal
is to automatically recover accurate 3D models from images. The most di�cult part is to ob-
tain enough reliable feature correspondences in the images. City modeling from aerial photos
is for instance an important topic of photogrammetry (e.g. [RHM95],[LF96],[HSG96],[KM96]).
Ones of the most successful systems in vision are obtained using turn-tables on which the
object shape is recovered (e.g. [NB94],[TFZ96], [SD97]) or using reasonable user interactions
for outdoor scenes (e.g. [DTM96]). A recent and interactive approach [LDR98] allows to
modify the lights in a reconstructed scene taking into account of the shadows.

The second way is mainly proposed by the computer graphics �eld: in many years were
proposed image based rendering techniques like image interpolation (e.g. [Wol90], [BN92],
[Che95], [SD96], [LCH96]). It is shown for example that it is su�cient to manually set
some salient features correspondences and obtain amazing results, even if there is no real
geometric evidence for the geometric morphing proposed. So image interpolation has to
be considered as a useful tool for image compression or visual simulation. More detail on
related work is going to be presented in section 2.

This is the approach chosen here, and an algorithm to obtain interpolations from two
distant views of a real scene is presented in section 3. Before reaching this point, we have to
establish correspondence between to images; section 2.1 �rst justi�es the choice of region-
growing based dense matching methods we are presenting; The main reason is that this kind
of algorithm can reasonably works with larger displacements (e.g a quarter of image size)
than many others, and that it can work with or without the rigidity constraint. Secondly,
a robust algorithm converts these pixel correspondences into an adequate structure for the
last and view interpolation step. This structure encompasses the transformation between
the images using constrained and dependent triangulations in both of them. In particular,
half occluded areas are explicitly represented and unmatched areas (e.g. low textured ones)
are �lled. Third, we describe the view interpolation step. Like other morphing techniques,
it uses heuristics to combine shape interpolation and texture blending.

2 Related Works

We shortly review related works for each of the three steps of our algorithm (matching,
triangulations and rendering) and discuss their links with our method.

2.1 Matching

Matching is one of the major research area in the computer vision community. Its applica-
tions range from object recognition to 3D perception, and in areas ranging from robotics to
video indexing. The broad categories of algorithms are identi�ed upon matching primitives
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4 Maxime Lhuillier

(sparse primitives like interest points and edges) or dense (all pixels) and the assumption of
a rigid scene or of non rigid scene.

Using sparse or dense primitives for view synthesis is discuted by [BM97]. It is possible to
recover a complete surface of an object using a sparse set of matched and then reconstructed
points. Under the assumption that the matched points lies on planes, it is su�cient to
compute a 2D Delaunay triangulation in one of the reference views with matches as vertices
and obtain a surface by back-projection. Convincing results are obtained unless a single bad
match occurs: in such a case the whole texture of neighboring triangles is wildly stretched
when the viewer goes away from the reference view point. Further it does not model half-
occluded areas which are important for large displacements of the camera. However, some
manually but well selected feature matches like edges are su�cient to obtain dramatic image
metamorphosis [BN92] if we combine generalized image warping and cross-dissolve between
images elements [Wol90].

Thus for automatic methods, most people compute dense displacement mappings. For
stereo images [DA89], [Kos93] whose epipolar geometry is known a priori, the search space
can be reduced to a 1D along epipolar lines. The main problems are repetitive patterns,
texture-less areas, depth discontinuity and half-occluded regions.

Another approach is optical ow estimation[BFB94], which handles non-rigid scenes but
assuming instaneous small displacements. Hierarchical methods seems to be necessary to
treat large displacement range. However, coarse to �ne strategies might miss some texture
details and fail at depth discontinuities. Especially in the non rigid case, the dense matching
is ill-posed due to the aperture problem: the local displacement can only be recovered in
the direction of the intensity gradient. Thus additional smoothness assumptions are needed
usually to obtain displacements. Only a few algorithms are able to establish correspondences
across images of two di�erent scenes (e.g. to obtain morphings between di�erent faces
[Que97], [SK98]).

The requirements on a stereo algorithm for view synthesis are discussed by [Sch96a].
Although uniform areas are di�cult to match, they usually do not create visual artifact if
their boundaries are matched correctly. It is su�cient to interpolate the matching. Further,
[SD95],[SD96] show that the resulting rendering is correct under the additional assumption of
monotonicity along conjugated epipolar lines. Next we have to deal with partial occlusions:
The best heuristic to assign displacements to such regions seems to assume a constant depth
for the background [Sch96a].

If we are not interested by matching untextured areas, why not use an algorithm which
match only reliable (i.e textured) areas but without strength constraints like epipolar constraint
and displacement bound ? One can interpolate the other ones with a triangulation in the
images. Region growing matchings are reasonably e�ective even without such constraints.

Region growing is a classic approach for segmentation [HS85],[Mon87]. In its simplest
sense, region growing is the process of merging neighboring pixels (or collections of pixels)
into larger regions based on homogeneity properties (cf. [HS85]). Region growing dense
matchings are greedy algorithms and therefore they are simple and e�cient: at each step,
a new match is picked from the set of current matches and is used to detect other matches
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in its neighborhood [OC89], [Lhu98]. The growth of the matched area stops when its bor-
ders are stopped by image borders, occluded regions or untextured areas. A patch to patch
region growing matching is designed by [OC89] to match two SPOT satellite images. Inter-
esting results are obtained even for large displacements, little windows and without epipolar
constraints for outdoor scenes [Lhu98]. Oddly, region growing matchings seems not to be
commonly used.

2.2 Triangulations

Although graphic hardware needs usually triangulations to produce fast renderings, some au-
thors display their dense displacement mappings using pixel by pixel rendering (e.g. [SD96],
[Sch96a], [BM97]). The main advantage of this rendering is that any false match will be lost
in the crowd and become unnoticeable [BM97]. The advantages to represent the displace-
ment mapping with triangulation are: a reduced complexity and memory, explicit topological
relations and easy interpolation for unmatched gaps.

In computer vision, triangulations are often associated with the problem of surface re-
construction. For such a case, the solutions obtained could provide a solution to our problem:
rendering-oriented structure can be deduced from a reconstructed surface simply by projec-
ting the surface triangulation into the views. However, it does not handle non rigid scenes
for which no 3D information can be obtained, nor complex scenes (trees with leaves for
instance) where the 3D reconstruction can never be achieved.

One class of surface algorithm generates triangulations from dense range images. For
instance, [GSB97] present a fast adaptative triangulation. An intermediate adaptative qua-
drilateral mesh is generated from the depth curvature, then the diagonal edges which best
agree with the depth gradients and discontinuities are chosen. Another method [Koc95] seg-
ments the range image using a surface orientation histogram and then spans each recovered
smooth piece with independent triangulations. The discontinuities are thus preserved.

A second class of surface algorithms perturbs an initial surface so as to minimize the
matching error. A robust method [FL94] combines diverse sources of information for the
deformation: stereo and shape from shading data, 3D features and 2D silhouettes. A recent
approach [FK98] guides a topology-variable surface using level set methods.

Our approach is closer to the adaptative triangulation method: A dense displacement
is converted to a Joint View Triangulation (JVT). However there are two di�erences: The
matching is validated or invalidated during the conversion; and we generate triangulations
that correctly treat the half occluded regions in the two views.

A structure similar to the JVT was suggested as \future work" by [SDB97] in the com-
puter graphics �eld. To obtain a real-time visualization of a complex urban scene, they
represent nearly objects as classical 3D models and distant scenery as 'impostors'. An im-
postor is a pre-calculated view of a model projected onto a transparent polygon, which is
drawn instead of the model to accelerate the display process. The suggested problem was
to generate a structure to obtain smooth transitions between two improved impostors.

Other structures have been proposed to model visibility information in computer vision
and computer graphics (e.g. aspect graphs [GCS91] and visibility skeleton [DDP97]), but
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6 Maxime Lhuillier

they need a 3D model as input and are not designed for the same uses. In contrast to these,
our structure is directly constructed from a displacement map of a (possibly non rigid) scene.

2.3 Rendering the Displacement Mapping

We distinguish geometry-based and heuristic renderings for a displacement mapping. Many
solutions have been proposed in all cases.

If the scene is rigid, one can implicitly or explicitly recover the geometry of the scene.
From weakly calibrated images, [LF94] generate new views applying a ray-tracing like algo-
rithm in the displacement mapping along epipolar lines and [AS97] use the trifocal tensor.
[SD95] and [Sch96a] add a prewarping recti�cation step and a post warping step to a linear
interpolation of a complete displacement mapping. Hence the interpolation result coincides
with a real camera movement between the two reference views. In particular, unnatural dis-
tortions of simple linear interpolation are avoided. Otherwise, the algorithms use strongly
calibrated images. All corresponding points to the displacement are reconstructed and di-
rectly projected, or are �rst �tted by piece planes and next projected. This classical approach
is however more fragile than the previous one, because the estimation of camera parameters
is a fragile process, and it lacks of generality as cameras cannot always be calibrated.

The advantage of the heuristic renderings is their applicability for deformable objects
(non rigid scenes or di�erent objects like faces). Because of this generality, features are
di�cult to match automatically. Usually, a sparse set of salient matches are manually
entered and then a displacement mapping is interpolated (e.g. [BN92], [LCH96]). The main
drawback is that the allowed points of view are limited between the two initial ones.

We �nally note that renderings are not limited to classic photos: one can merge them to
obtain planar [Sze96] or cylindric [Che95], [MB95] mosaics and then interpolate them. An
other way for rendering consists to organize the image contents using layers [BSA98], but it
seems to be di�cult to obtain a complete and automatic process.

3 Principle

We present in this section the principles of our three step method.

3.1 Overview

The �rst step (see Section 3.2) establishes dense correspondences for pixels between two
images. Although uniform areas are di�cult to match, they usually do not create visual
artifact during image interpolation if their boundaries are matched correctly. It greatly
simpli�es our synthesis problem, because it su�ces to match only the textured areas and
interpolate the matching in surrounded and more uniform ones. We usually obtain surprisin-
gly good results by applying unconstrained matching (no epipolar constraint or displacement
bound) like correlation-based region growing matchings [Lhu98]. A best �rst matching stra-
tegy drastically limits the possibility of bad matches.

In the second step (see Section 3.3), a robust algorithm converts this unre�ned matching
to a rendering-oriented representation called Joint View Triangulation (JVT) which models
visibility informations. It provides
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� An image-based representation with a reduced set of primitives, which approximates
the displacement map.

� For each view, a separation of matched and half occluded areas to allow di�erent
processes on them.

� A correspondence between primitives which represents the common (i.e. matched)
areas of the pair. This ensures the global coherence of the data and allows non redun-
dant processing during use.

This structure is �nally used in the last step (see Section 3.4) to generate image interpo-
lations. Like other morphing techniques, it uses heuristics to combine shape interpolation
and texture blending. We tackle with the lack of depth information by drawing all triangles
in both images in a painter-like [JDF91] back-to-front order.

3.2 Region Growing Matching

The matching has two main steps. The �rst step extracts and matches a sparse set of highly
distinctive features like points of interest. The second step uses these initial matches to seed
concurrent dense matching propagations, using a best �rst matching strategy. This extends
the matches to include the textured areas of the images. The resulting matching is su�cient
for image interpolation.

We use the ZNCC correlation measure (zero-mean normalized cross-correlation) in both
steps for matching. The ZNCCk(ij; lm) measure for (2k + 1)� (2k + 1) windows centered
at pixels (i,j) and (l,m) is

ZNCCk(ij; lm) =

P
�k�dx;dy�k(li+dx;j+dy � �lij)(ll+dx;m+dy � �llm)qP

�k�dx;dy�k(li+dx;j+dy � �lij)2
qP

�k�dx;dy�k(ll+dx;m+dy � �llm)2

where lij is the luminancy of pixel (i,j) and �lij = 1
(2k+1)2

P
�k�dx;dy�k li+dx;j+dy. It is

invariant to linear luminancy changes (i.e. changes of the form l  al + b). However the
use of such windows allows only image translation. Di�erent approches exists which would
allow important rotation changes, for instance using invariants like [Sch96b].

3.2.1 Seed Selection Step

Like many applications in computer vision, the �rst step of our method extracts and match
interest points. We use a slightly modi�ed version [SMB98] of Harris points [HS88], because
of their good repeatability and informational content. They are the points in images which
reach the local maxima of isotropic texture variation. Other seed features are possibles (e.g.
regions [Lhu98]). The points are matched across the two images using ZNCC5 and are the
initial contain for the set of seed matches.

3.2.2 Propagation Step

All seed matches are starting points of simultaneous and concurrent propagations in the
second step. At each step the match with the best ZNCC2 is removed from the current
set of seed matches. Then we look for new matches in its neighborhood and add them to
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8 Maxime Lhuillier

the set of current seeds and to the set of accepted matches (the displacement mapping to
build). The process terminates when the seed set is empty. Notice that the risk of bad
propagation is greatly reduced by the choice of the best match at each time. For instance, a
single good and initial seed match is su�cient to provoke an avalanche of correct matches.
Thanks to the concurrent strategy between the initial matches, the bads are discarded by
small or empty propagations. This makes our algorithm much less vulnerable than others
[TZ96], [ZDF94] which try to match a maximum of interest points during the seed selection
step. More details are given in Section 6.

3.3 Joint View Triangulation

This section explains how to convert robustly an unre�ned matching between two images to
a JVT (see �gure 1). A precise de�nition is given in the following subsection.

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Image 1 Image 2

Joint View Triangulation Part in Image 1 Joint View Triangulation Part in Image 2

Figure 1: The �rst row represents two views of a non rigid scene, composed of a small vertical
rectangle on an in�nite horizontal plane and a falling ball. Half occluded areas (visible in
only one image) are shaded gray. The second row shows a joint view triangulation for these
two views. Matched (resp. Unmatched) triangles �ll the matched (resp. unmatched) areas.
The black edges represent the boundaries of matched areas and are forced to be edges of
their respective triangulations.

3.3.1 What is a JVT?

As a JVT provides

1. An image-based representation with a reduced set of primitives;

2. For each view, a separation of matched and half occluded areas;

3. A correspondence between primitives which represents the matched areas in the image
pair.
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The joint view triangulation for two views is a pair of inter related image triangulations,
one for each image, based on an underlying locally dense displacement map. The Delaunay
triangulation is chosen because of its minimal roughness property [Rip90]. Triangulating in
image space allows non rigid scenes to be handled.

We call matched triangle (resp. unmatched triangle) a triangle which covers a region
of matched (resp. unmatched) pixels in its image. Matched and unmatched triangles are
separated by constrained edges. If we assume that the displacement map is such that
half occluded areas coincide with unmatched ones (ideal matching case), the condition 2 is
satis�ed. The contours are the sets of constrained edges which bound the sets of matched
triangles in each image. We impose �nally a one to one correspondence between each vertex
and between each edges of the contour of di�erent images to satisfy the condition 3.

3.3.2 Construction

This section describes a robust algorithm for JVT (more details are given in Section 7).
Because of noisy and/or bad matches, some caution is needed to convert the resulting

and unre�ned displacement map to a JVT. First we use the piecewise smooth assumption to
regularise the dense matching by locally �tting planar patches and obtain a set of matched
image patches. Second a JVT is de�ned by successive merges of the matched image patches
in the two images simultaneously.

The �rst image is partitioned into a regular set of independent square patches, and for
each one, we try to �t a matched patch in the second image. We represent the distortions
with homographies or a�ne transformations, which are estimated using a RANSAC-like
[FB81] procedure to inner matches (see Figure 2). If one is found, the relative coherence of
these matches is checked.

1 2
1

2
A B H(A)

H(B)

H

In Image 2In Image 1

3 3
4 4

5 5
6

6
7 7

8 89 9

10 11 10 11
C

H(C)H(D)D
34 4 3

Figure 2: Points A,B,C, and D de�ne a square patch P1 in image 1. A sparse subset of
the dense matching within is labeled from 1 to 11. The matches 1,2,3 and 4 (selected
by a RANSAC trial) are respectively in the small framed 3 � 3 neighborhood of vertices
A,B,C and D. They are used to accurately de�ne a planar homography H , which maps the
square patch P1 in image 1 to the distorted square patch P2 de�ned by transformed points
H(A); H(B); H(C) and H(D) in image 2. All matches (except 9) are compatible with H .
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10 Maxime Lhuillier

However the image patches constructed in the second image are not exactly adjacent
(see Figure 3). We next perturb the vertex locations in the second image to eliminate the
small discontinuities and overlaps between patches. We do this by merging any of the four
vertices (a; b; c and d) which are within a distance sconnect of at least one other vertex, by
averaging all vertices within this connected component. Note that this step improves but
can not solve all cases of intersecting patches. The same result is obtained if a vertex does
not exist or if it exists and is without the distance sconnect of all others.

In Image 2In Image 1 In Image 1 In Image 2

A B

C D

A B

C D

AVERAGE

STEP

A’ B’

D’

C’

A’’ B’’

C’’

D’’

i
a

b

c

d

Figure 3: A,B,C and D are four patches of image 1 and A',B',C' and D' are their corres-
ponding patches in image 2. Some patch vertices are forced to coincide if they are enough
close from each others. A", B", C", and D" are the result of this averaging step. Note that
it improves but can not solve all cases of intersecting patches (e.g. C" with D").

A JVT is then constructed by successive merges of the previous matched patches (see
Figure 4). It starts from two unmatched triangles in each images. Each matched patch is
merged to the current sets of matched triangles in both images, if its boundary edges do no
intersect the current contour (the polygonal boundary of the set of matched triangles) at a
single point in one of the images.

Image 2

Image 1 Image 1

Image 2

Image 1

Image 2

Image 1

Image 2

Image 1

Image 2

Figure 4: Gray (resp. white) triangles are matched (resp. unmatched) triangles. Black
forced edges are constrained and form the contours. The sets of matched triangles grow
simultaneously in the two images in a coherent way. Three insertions of patch matches of a
complete merging step are shown.
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This incremental scheme allows to merge robustly a non-intersecting subset of matched
patches while maintaining the coherence between the two views (i.e. a one to one corres-
pondence between all vertices and contour edges in the two images). It works row by row
from the top to the bottom of the grid in the �rst image. The structure is improved in a
last step by adding to the set of matched triangles each unmatched triangle for which we
can �t an a�n transformation using inner pixel matches. This improvement modi�es the
JVT by swapping constrained-unconstrained status on existing edges.

3.4 Image Interpolation

The two previous steps build a joint view triangulation from two images. We now describe
how to use it to generate intermediate images. More details are given in Section 8.

A JVT provides a correspondence between all vertices of di�erent images. Then all
triangles are drawn using linear interpolation of their vertices, except those which have an
image corner as vertex.

A modi�ed version of the painters algorithm [JDF91] is used to deal with variable depth
components of the scene. The classic painters algorithm consists of drawing all triangles in
a back-to-front order. Thus, the foreground is drawn over the previously drawn background.

In the absence of any depth information, a heuristic warping order for each triangle of the
JVT is deduced from its properties and the displacement of vertices. Unmatched triangles
are drawn �rst because they contain occluded areas.

Secondly we choose to draw all matched triangles in increasing order of their vertex
displacements, assuming that the fastest vertices are the closest to the viewer. Note that
this drawing order is exact if the camera motion is a pure translation and the scene is rigid.

4 Results

Our method has been demonstrated on many real image pairs (see the Mpeg sequences at
our web site http://www.inrialpes.fr/movi/people/Lhuillie/demo.html).

4.1 Details about a Complete Exemple

Summary: Figure 5 shows the intermediates results of the matching and JVT steps for one
image pair in the ower garden sequence. First a sparse and initial set of Harris points are
matched with correlation and winner take all (Figure 5.a). These seed matches are used in
a correlation-based region growing step which propagates the matches in textured regions of
the images (Figure 5.b). We have used the pixel to pixel region growing matching described
in Section 6. Third the resulting pixelic dense matching is converted to a JVT (Figure
5.c) by �tting and merging planar patches in the image space. Finally all triangles of the
JVT are warped by linear interpolation of their matched vertices to generate intermediates
images (Figure 6). It should be stressed that we have not used or recovered the epipolar
constraint. The algorithm runs quickly, for instance, these 360� 240 images are matched in
4s (1s for seeds and 3s for propagation) and the joint view triangulation is constructed in 3s
on a Ultra Sparc 300Mhz. In practice, we �t two sizes of square patches (16� 16 and 8� 8)
to obtain more matched patches and accelerate the process.
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12 Maxime Lhuillier

(a)

(b)

(c)

Figure 5: Flower garden image pair and initial sparse matches (a), (non rigid) region growing
dense matching (b), the resulting joint view triangulation (c). Matched pixels of the left
image (b) are colored with a gray-black checker-board, and the corresponding pixels of the
right image are colored with the same color. This makes it easy to visualize the match of
each square and its distortion. Black edges (c) are constrained and form the �nal contours
of matched regions. All vertices and the contour edges are matched in the two views. White
edges are Delaunay edges and are not necessarily matched.

INRIA



Towards Automatic Interpolation for Real and Distant Image Pairs 13

Figure 6: Some sample images of the interpolation: � = 0; 0:2; 0:4; 0:6; 0:8; 1 from
left to right and up to down (see this movie and many others at our web site
http://www.inrialpes.fr/movi/people/Lhuillie/demo.html).
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14 Maxime Lhuillier

Unmatched areas: This �rst example is di�cult to match and to morph: it exhibits
large unmatched areas like the untextured sky and half occluded areas behind the trunk.
Some heuristics criteria to distinguish them could be envisaged to improve the JVT but
nothing such was done here. It does not a�ect the JVT coherence (i.e. one to one corres-
pondences between vertices and between contour edges).

Precision: The global precision of our rendering structure is �xed by the patch size:
roughly 8 pixels. Patch limitations (size and regular location in the left image) of our
implementation and imprecise stops of propagation at occlusion contours are the causes of
imprecise approximation and display of the trunk borders. The morphing result su�ers of
the lack of precision because the matching ordering constraint is violated. If patch size is
too large, the approximation is too coarse. On the other hand, the patch �tting is unstable
if it is to small. A more detailed discussion about patch size is given in subsection 7.5.

Stability: To illustrate the stability of our method, we propose a second experiment
(see Figure 7) on the same image pair. We manually set four seed point matches with 1-2
pixel accuracy

1. in a bush at the left of the images.

2. in the ower at the right of the images

3. near the center of the trunk

4. at a house window near the center of the images

and use them as seed matches for a propagation. Each one is su�cient to provoke an
avalanche of correct matches in each of the four isolated and textured region. The resulting
JVT is nearly the same as in the �rst experiment and we have not observed noticeable
blunders for the morphing.

4.2 Others examples

The following examples are obtained in the same conditions: pixel to pixel region growing,
same parameters and no epipolar constraint.

The house image pair is shown in Figure 8. The matching is di�cult in the �ne and
repetitive texture of the grass below the house, in low textured areas in the foggy back-
ground and in the bushes at the image bottom due to texture sampling and the lack of
seed matches. Especially in the grass and bushes cases, the main goals of the JVT is the
rejection/acceptance of matching and the interpolation of enclosed and unmatched areas.
The morphing step is easier than the previous scene thanks to that the ordering constraint
of the matches is preserved. These 768� 512 images are matched in 28s (6s for seeds, 22s
for propagation) and the JVT is constructed in 18s. Propagation can be done in 14s using
small 3� 3 windows, but the foggy background and a part of the grass can not be correctly
matched.
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(a)

(b)

(c)

Figure 7: Flower garden image pair and four manual seed matches (a), the resulting (non
rigid) region growing dense matching (b) and joint view triangulation (c).
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The street image pair is shown in Figure 9. These 768� 512 images are matched in 24s
(6s for seeds, 18s for propagation) and the JVT is constructed in 15s. Like in the previous
grass case, only a sparse set of small matched areas are retained by the JVT in the �ne
texture of the road. The JVT �lls the gaps at the morphing step. However bad matches are
accepted by JVT near the right and top corner of the left image: the �rst in the repetitive
texture of the roof, the second at the corner of the house window. The corner window
match generates the main blunder while morphing; such an artifact is easily removed using
the epipolar constraint in the propagation step after its recovery in the seed point matches
step. The morphing result is shown in Figure 9 without the use of epipolar constraint.

5 Conclusion

A new method is proposed for the automatic image interpolation of two views, which can
deals with non rigid scene and large camera motions. First, we present a greedy region
growing based dense matching algorithm to obtain the displacement mapping in enough
textured areas of the images. Second, this displacement is converted into a rendering-
oriented representation which we call Joint View Triangulation. This conversion checks the
matching coherence using local geometric constraints. A JVT models visibility information
by separating matched and unmatched areas, and by matching primitives of common areas
between the two images. Finally, our structure is used in the morphing step.

This approach improves existing ones in di�erent ways: it does not assume rigidity of the
observed scenes, even if rigidity constraint can improve the result quality. It provides an new
image mesh structure which handles the matched and unmatched region. This structure
allows simple standard display algorithms to run in realtime for animation purpose like
camera motion simulation.

There still exists a number of ways to improve our method. First, the JVT accuracy is
limited by the �xed patch size and locations of our implementation. We have seen that the
morphing quality su�ers of this lack of accuracy at the matched areas boundaries when the
matching ordering constraint is violated (e.g. the trunk). In this case, a boundary re�nement
is necessary. Variable size patches would be a good way to represent matched regions like
thin objects (e.g. electric-post) or large and untextured regions (e.g. manufactured object
parts) with more precise borders.

Secondly, some unmatched gaps of the dense matching are �lled using JVT by interpola-
tion. These gaps are due to the untextured areas and matching errors, and the problem is to
distinguish them from half occluded areas. We could detect them using heuristic criterions
based on size, distortion between images, topological constraints and texture information.
However careful experimentation has to be performed in order to see what real improvements
these methods are bringing in. Finally JVT should also be used for surface reconstruction
and this work should generalized for an arbitrary number of views. We are planning to work
on these problems in a near future.
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Figure 8: Seed matches, non rigid propagation, joint view triangulation and sample images
of the interpolation � = 0; 0:5; 1 for the house image pair.
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Figure 9: Seed matches, non rigid propagation, joint view triangulation and sample images
of the interpolation � = 0; 0:5; 1 for the street image pair.

INRIA



Towards Automatic Interpolation for Real and Distant Image Pairs 19

6 Annex A: Pixel to Pixel Region Growing Matching

6.1 Principle

A displacement mappingMap stores the set of correct pixel matches. The algorithm consists
of growing this set. Let Seed be the set of current seeds matches near its boundaries. At
each step we remove the match (a;A) from Seed with the best correlation score. Match
(a;A) is the seed for a local propagation: new matches in the neighborhood of (a;A) (see
Figure 10) are added simultaneously to set Seed and map Map. These new matches (b; B)
are added only if neither pixel b nor B are already stored in Map.

a A

Neighborhood of pixel a in view 1 Neighborhood of pixel A in view 2

b B

c C

Figure 10: De�nition of a match neighborhood. The neighborhoodN (a;A) of a match (a,A)
is a set of matches included in the two 5 � 5-neighborhood N5(a) and N5(A) of a and A.
Possible matches for b (resp. C) are in the 3� 3 black frame centered at B (resp. c). The
complete de�nition of N (a;A) is

f(b; B); b 2 N5(a); B 2 N5(A); (B �A)� (b� a) 2 f�1; 0; 1g� f�1; 0; 1gg:

6.2 Algorithm

The result is a displacement mapping Map, which is maintained injective. We use a heap
[AHU74] for the set Seed of the potential seeds for local propagations and to select the best
at each step. The complexity of propagation is then O(nlog(n)), where n is the number of
matched pixels in the image at the end of the process. Notice that it is output sensitive
(i.e. it is dependent only from the number of resulting matches, not from all pixels) and
independent of any disparity bound.

Let s(a) be some estimate of the luminancy roughness for pixel a and smin be a lower
threshold. We use s() to forbid propagation into insu�ciently textured areas fa; s(a) <
sming.

Let r(a; b) be a measure of reliability for pixel match (a; b) and rmin be a lower threshold.
Matches with the best reliability are �rst considered for propagation.

Let lij be the luminance of pixel (i; j). The following de�nitions slightly di�er from those
presented in our previous work [Lhu98]:
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s(ij) = maxfjli+dx;j+dy � lij j; (dx; dy) 2 f(1; 0); (�1; 0); (0; 1); (0;�1)gg

smin = 0:01

ZNCCk(ij; lm) =

P
�k�dx;dy�k(li+dx;j+dy � �lij)(ll+dx;m+dy � �llm)qP

�k�dx;dy�k(li+dx;j+dy � �lij)2
qP

�k�dx;dy�k(ll+dx;m+dy � �llm)2

r(ij; kl) = ZNCC2(ij; kl)

rmin = 0:5

The algorithm is

// ***** First, initialize the set Seed with seed feature matches *****
Detect Harris points and match them using ZNCC5 correlation and winner takes all.
Initialize Seed with all these seed point matches.
// ******* Next, propagate *******
While Seed 6= ; do
. Pull from Seed the match (a; b) which maximizes reliability r(a; b)
. Let Local be a empty heap of pixel matches
. // **** Store in Local the potential matches of local propagation from match (a; b) ****
. For each (c; d) in N (a; b) (see Figure 10) do
. . If c and d are not already matched and s(c) > smin and s(d) > smin and r(c; d) > rmin

. . Then store match (c; d) in the heap Local

. . End if.

. End for.

. // **** Store in Seed and Map consistent matches of Local with Map ****

. While Local 6= ; do

. . Pull from Local the match (c; d) which maximizes r(c; d)

. . If c and d are not already matched in the disparity map Map

. . Then store match (c; d) in the disparity map Map and heap Seed

. . End if.

. End while.
End while.

If the scene is rigid, it is possible to add the epipolar constraint for match (c; d) in the line
if c and d are not already matched and s(c) > smin and s(d) > smin and r(c; d) > rmin
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7 Annex B: Joint View Triangulation

7.1 Overview

We propose a �ve-step algorithm which robustly converts an imperfect displacement map
to a JVT.

� Fitting: Partition the �rst image into a set of independent regular patches, and for
each one, try to �t a matched patch in the second image using inner matches (see
subsection 7.2).

� Averaging: Remove small discontinuities and overlaps between the matched patches
in the second image, by slightly moving their vertices to averaged locations. (see
subsection 7.3).

� Merging: This step is more delicate. It grows the regions of matched triangles in the
two images simultaneously in a coherent and robust way, by merging patches which
can be smoothly joined to the current region boundaries (see subsection 7.4).

� Completion: The three previous steps are not optimal because of the parameter
choices, but produce a coherent JVT. We improve the structure by declaring each
unmatched triangle to be matched, if we can �t a matched triangle to it. This step
modi�es the structure by swapping constrained-unconstrained status on existing edges
and then it is easy.

� Optimization: This step depends on the application. One can improve the matching
triangles accuracy by perturbing the vertices to optimize a criterion (e.g. correla-
tion score, inlier rate, smoothness, epipolar errors...). Simpli�cation is also possible
by deleting some vertices. We have not used this step for the presented morphing
application.

Finally, a discussion about two important parameters of this algorithm is described in sub-
section 7.5.

7.2 Fitting Step

Because of noisy and/or bad matches, some caution is needed to obtain a reliable estimate
of a matched patch P2 in the second image from dense matches in a square patch P1 in the
�rst one (see Figure 11).

7.2.1 Principle

We try to �t a plane homography H (see the next subsection) using a RANSAC-like [FB81]
procedure from the dense matches within P1. If one is found, the relative coherence of the
matches is checked and P2 is de�ned by P2 = H(P1). However, we do not accept the patch
match (P1; P2) if the distortion of P2 is too large.
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1 2
1

2
A B H(A)

H(B)

H

In Image 2In Image 1

3 3
4 4

5 5
6

6
7 7

8 89 9

10 11 10 11
C

H(C)H(D)D
34 4 3

Figure 11: Points A,B,C, and D de�ne a square patch P1 in image 1. A sparse subset
of the dense matching within is labeled from 1 to 11. The matches 1,2,3 and 4 (selected
by a RANSAC trial) are respectively in the small framed 3 � 3 neighborhood of vertices
A,B,C and D. They are used to accurately de�ne a planar homography H , which maps the
square patch P1 in image 1 to the distorted square patch P2 de�ned by transformed points
H(A); H(B); H(C) and H(D) in image 2. All matches (except 9) are compatible with H .

For each RANSAC trial, four matches are selected in the square; this de�nes a trial
homography (see the next subsection). These four matches are chosen from the neighborhood
of the four corners to obtain a usable accuracy and to ensure a good match distribution.
The second part of a RANSAC trial counts the number of matches in the square compatible
with the current homography. The best homography maximizes the number of inliers.

7.2.2 Plane Homography

A point in an image is represented by its homogeneous coordinates (�x; �y; �)> or its Carte-
sian coordinates (x; y)>. A plane homography H is a one to one mapping which transforms
a point m1 = (x1; y1; 1)

> to a point m2 = (x2; y2; 1)
> such that

�

0
@x2
y2
1

1
A =

0
@h11 h12 h13
h21 h22 h23
h31 h32 h33

1
A
0
@x1
y1
1

1
A :

One can �t a plane homography from four matches (ui; u
0
i), no three of them are collinear.

Indeed, each match provides 2 homogeneous linear equation in coe�cients hij from relation
�iu

0
i = Hui, and H counts only 8 = 9 � 1 degree of freedom because its coe�cients are

de�ned up to a scale.

7.3 Averaging Step

The previous step provides a set of image patch matches (P1; P2), but the patches in the
second image are not exactly adjacent (see Figure 12). We next perturb the vertex locations
in the second image to eliminate the small discontinuities and overlaps between patches.
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In Image 2In Image 1 In Image 1 In Image 2

A B

C D

A B

C D

AVERAGE

STEP

A’ B’

D’

C’

A’’ B’’

C’’

D’’

i
a

b

c

d

Figure 12: A,B,C and D are four patches of image 1 and A',B',C' and D' are their corres-
ponding patches in image 2. The averaging step forces some patch vertices to coincide if
they are enough close from each others. A", B", C", and D" are the result of the averaging
step. Note that this step improves but can not solve all cases of intersecting patches (e.g.
C" with D").

Let A;B;C;D be four connected squares (or nil if none), i their common vertex, and
a (resp. b; c and d) the associated vertices of matched patches A0 (resp. B0; C 0 and D0).
Let sconnect be the threshold for the maximum distance between vertices. Let G be the
unoriented graph whose vertices are a; b; c; d with edge ab (resp. ac; ad; bc; bd and cd) if
jjabjj2 < sconnect (resp. jjacjj2; jjadjj2; jjbcjj2; jjbdjj2 < sconnect), where jjxyjj2 is the Euclidean
distance between vertices x and y. The averaging step consists to assign to a (resp. b; c; d)
the average value of all the vertices a; b; c; d which are in the connected component of a
(resp. b; c; d) of the graph G. Note that this step improves but can not solve all cases of
intersecting patches (see caption of Figure 12). In this work, sconnect is a constant equal to
3 pixels.

7.4 Merging Step

The previous steps produce a globally incoherent set of patch matches because of intersec-
tions. Many maximal and non-self intersecting subsets are possible. The merging step selects
one of these and converts it to an incomplete but coherent JVT (the next step will complete
it). The coherence between the two views is maintained at each stage of the merging step
(i.e. a one to one correspondence between all vertices and contour edges of the JVT in the
two images).

7.4.1 Principle

The JVT starts from two unmatched triangles in both images and the sets of matched
triangles is grown simultaneously in the two images (see Figure 13) using the two opera-
tors InsertMatchedTriangle and ForceMatchedQuadrangle (see subsection 7.4.3). Each
checks the current JVT to decide whether its operation is feasible, and if so greedily ap-
plies it. If it is not feasible, an unmatched gap (a set of unmatched triangles) is left in the
�nal triangulation, unless the following completion step �lls it. We explain a topological
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choice for JVT in subsection 7.4.2 and specify the merging step using the two operators in
subsection 7.4.4.

Image 2

Image 1 Image 1

Image 2

Image 1

Image 2

Image 1

Image 2

Image 1

Image 2

Figure 13: Gray (resp. white) triangles are matched (resp. unmatched) triangles. Black
forced edges are constrained and form the contours. The sets of matched triangles grow
simultaneously in the two images in a coherent way. Three insertions of patch matches (i.e.
3� 2 InsertMatchedTriangle operations) of a complete merging step are shown here.

7.4.2 Topological Limitation

We chose to limit the possible topologies of the set of matched triangles to simplify our algo-
rithm: We do not accept the cases shown in Figure 14. A �rst concrete consequence is that
the contour (the polygonal boundary of the set of matched triangles) has a simple represen-
tation. Each of its vertices has only two links: the next and the previous vertex. A second
consequence is that algorithms which use the structure are simpli�ed too. For instance, a
simple walk using edge adjacencies su�ces to cover a complete connected component of the
set of matched triangles.

I

Figure 14: Gray (resp. white) triangles are matched (resp. unmatched). Black forced edges
form the contour. More than two contour edges are adjacent to the same vertex I . We
forbid a such case to simplify our algorithm and some others.

7.4.3 The operators InsertMatchedTriangle and ForceMatchedTriangle

The InsertMatchedTriangle operator takes the coordinates of three point matches in the
two images and veri�es that each of the three matches is consistent with the current struc-
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ture. A new point match is consistent if its two points are corresponding vertices of a match
of the contour, or are both outside of the set of matched triangles (see Figure 15). Second,
it veri�es that the resulting constrained edges would not intersect a contour in either image.
The Figure 16 shows all good and some bad cases for edge con�gurations to obtain a success.

First Image Second Image

B C D

FGHI

E

A B
C

H F

E
D

G

A=1

I=1
J=2

J=2

3
3

4

4

5

5

Figure 15: A,B...J are the current matched vertices of gray and matched triangles in the
two images. A new point match is consistent if its two points are corresponding vertices of
a match of the contour, or are both outside of the set of matched triangles. Matches 2 and
4 are consistent but 1,3 and 5 are not. Note that match 4 is consistent even though the
matching ordering constraint is violated (see the ball in Figure 1).

A B

C

D
E

F

G

Figure 16: Gray triangles are matched triangles and the topology of their set is the same
in the two images. Black framed triangles A,B,C and D (resp. E,F,G) are (resp. are not)
correct inputs for the InsertMatchedTriangle operator. Thus, triangle A,B,C can be added
in both images to the current structure as matched triangles. Triangles E and F violate the
topological restriction. One edge of Triangle G intersects an edge of the contour.

The ForceMatchedQuadrangle operator takes coordinates of four point matches and
veri�es that each of the four matches coincides with a vertex match of the current structure.
Second, it veri�es that if the resulting constrained edges would not intersect a contour in
either image. The Figure 17 shows the only three possible cases for a success. Note that we
could not build a complete set of matched triangles homeomorphic to a planar ring without
ForceMatchedQuadrangle because of the topological restriction.

7.4.4 Merging Strategy

The two operators above are used in the merging step. A maximal set of coherent patch
matches is converted into two dependent sets of matched triangles in the two images, row
by row from the top to the bottom of the regular grid in the �rst image. Figure 18 shows a
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A C

D

B

Figure 17: Gray triangles are matched triangles and the topology of their set is the same
in the two images. Black framed quadrangles A,B,C (resp. D) are (resp. are not) correct
inputs for the ForceMatchedQuadrangle operator. Thus, Quadrangles A,B,C can be added
in both images to the current structure as matched triangles. One edge of quadrangle D
intersects an edge of the contour, and D is therefore rejected.

concrete example: the matched triangles of row n-1 were inserted in the current JVT (Figure
18.1) and impose topological constraints to the row n construction (Figure 18.3). To obtain
the result (Figure 18.2), we use a two pass algorithm (Figure 18.4):

row n-1

row n :

row n-1 :

row n :

1) We have : 2) We want :

row n-1 :

row n :

row n-1

row n :

row n :

row n-1 :

pass 1 pass 2

4) So we use a two pass algorithm to make the row n :

3) But the two following and intermediate steps are forbidden
because of the topologic limitation :

A B

Figure 18: Only matched triangles are drawn and the topology of their set is the same in the
two images. Part 1 shows the initial set, 2 the resulting set, 3 the problems to be avoided
and 4 our solution.

1. use InsertMatchedTriangle operator twice for each patch match from left to right
avoiding topological limitations (Figure 13 showed a case without limitations).

2. complete some gaps in the current line by trying to grow the set of matched triangles
using the operators InsertMatchedTriangle (e.g. for patch A in Figure 18.4) and
ForceMatchedQuadrangle (e.g. for patch B in Figure 18.4).
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7.5 Discussion on Main Parameters for JVT

Two important parameters of our algorithm are the size of the regular patches in the �rst
image, and the connection radius sconnect in the averaging step.

The patch size de�nes the global accuracy of the joint view triangulation. If it is too large,
the approximation of the boundaries between matched and unmatched areas is too coarse.
For instance, �ne occluded areas are ignored and then recovered by matched triangles.
Further, the �tting step can not de�ne patch matches for matched but strongly curved
areas: these areas are covered by unmatched triangles. On the other hand, the �tting step
is unstable if the size is too small: some matched patches in the second image are too
stretched. In practice, with our pixelic region growing matching, a good compromise seems
to be a patch size between 8 and 16 pixels.

Parameter sconnect is a maximum distance for merging patch vertices in the averaging
step. Two vertices should coincide if their di�erent location comes from matching inaccuracy
but not if it comes from occlusion. If sconnect is too large, �ne occluded areas in the second
image are ignored: patch vertices on both sides are merged. On the other hand, matched
patches should be connected in the second image but are not if sconnect is too small. In fact,
the distinction between matching inaccuracy and thin occluded areas is unclear. We choose
sconnect = 3 pixels for our tests.

Patch operations like detecting discontinuities, averaging and merging exist in the com-
puter aided geometric design domain, for example the correction of CAD data with incon-
sistencies [UMH98].
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8 Annex C: Image Interpolation

8.1 Morphing

A joint view triangulation is built from image pair I0; I1. We now describe how to use it to
generate intermediate images I(�); � 2 [0; 1] between I0 and I1 such that I(0) = I0; I(1) =
I1.

To obtain I(�) from I0; I1, let ~I0 and ~I1 be two intermediate bu�ers. First, all triangles
of the joint view triangulation of I0 (resp. I1) are warped into ~I0 (resp. ~I1) in a painter-like
order. The following subsection explains how to warp a single triangle. Next, the �nal image
I(�) is obtained by texture blending of ~I0 and ~I1.

For the warp from I0 to ~I0, unmatched triangles are drawn before matched ones because
they usually contain occluded areas. The small unmatched triangles in I0 with two vertices
on di�erent connected components (e.g. trunk and background) do not correspond to an
object surface and should be drawn �rst. Thus, we choose to draw all unmatched triangles
v00 ; v

0
1 ; v

0
2 such that the value Maxfjjv10 � v11 jj; jjv

1
1 � v12 jj; jjv

1
2 � v10 jjg decreases, where v

1
i is

matched with v0i . Matched triangles are then drawn. We assume that the vertices with the
largest displacements between I0 and I1 are the closest to the viewer. Thus, we choose to
draw all matched triangles v00 ; v

0
1 ; v

0
2 in increasing order of Maxfjjv10 � v

0
0 jj; jjv

1
1 � v

0
1 jj; jjv

1
2 �

v02 jjg.
For the �nal texture blending of ~I0 and ~I1, we use texture weights s0(x; y) and s1(x; y)

for pixel (x; y) in ~I0 and ~I1, provided by the triangle warpings. The resulting value of pixel
I(�)(x; y) is then

I(�)(x; y) =
(1� �)s0(x; y)~I0(x; y) + �s1(x; y)~I1(x; y)

(1� �)s0(x; y) + �s1(x; y)
:

8.2 Warp a Triangle

We have to draw a 'source' triangle with vertices v00 ; v
0
1 ; v

0
2 2 I0 (resp. v10 ; v

1
1 ; v

1
2 2 I1) of a

joint view triangulation. Let v10 ; v
1
1 ; v

1
2 (resp. v00 ; v

0
1 ; v

0
2) be their respective vertex matches

in the other image. The vertices v0(�); v1(�); v2(�) of the 'destination' triangle in image ~I0
(resp. ~I1) are de�ned by �: vi(�) = (1 � �)v0i + �v1i . The texture of the source triangle is
mapped on the destination triangle using linear interpolation. We do not draw the source
triangle if the destination is reversed

A texture weight s is also estimated for each pixel of the destination triangle. It is
used to weight the �nal blending between ~I0 and ~I1. Normal weight (s = 1) is assigned
for non stretched triangles, and low weight (0 < s < 1) for stretched ones. We use s =

Min(1;
jjv0

0
v0
1
v0
2
jj

jjv1
0
v1
1
v1
2
jj
) (resp. s = Min(1;

jjv1
0
v1
1
v1
2
jj

jjv0
0
v0
1
v0
2
jj
) in our tests, where jjabcjj is the area of the

triangle a; b; c.
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