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Introduction

Motivations
3D reconstruction of outdoor environments using consumer 360 camera

Potential applications: content creation for VR, scene modeling 

Advantages: weak experimental constraints, avoiding costly 3D scanners

360 camera examples

                                                                                     Source: 360rumors.com



  

Reminders about automatic scene modeling from images (still images & vidéo)
There are usually two main steps: sparse and dense reconstructions 

Sparse: estimate surface from 3D reconstruction of sparse features in images

Dense: refine the surface using all image pixels

Sparse alone can also be useful in several contexts: large scale environments, 
limited hardware resource, if applications do not need high levels of details

Most sparse methods compute a 3D Delaunay triangulation whose tetrahedra 
are labeled freespace or matter (the surface is between freespace-matter)

Paper contribution
We propose corrections based on local-convexity to improve this labeling

They can be used as preprocessing or postprocessing of most sparse methods

Introduction



  

Definition
Let M be a set of points in

M is locally-convex at              if x has a neighborhood               such that               is convex

Reminder: X is convex if line segment               for all points             and

In the original definition [Karshon07], N is an Euclidean (spherical) ball centered at x

In our context
M is the matter in     , ie the union of the matter tetrahedra in the 3D Delaunay triangulation T

The most notable errors in M are falsely-labeled freespace tetrahedra due to bad or lacking points  
(eg a tetrahedron is freespace if it is crossed by a line-of-sight between a point and a camera)

In short, a freespace tetrahedron is relabeled matter by our corrections if all its vertices are in 
matter tetrahedra and if the tetrahedron is “small enough”

N can be anisotropic due to the prevalence of vertical structures in usual scenes 

Local-convexity (LC)
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What we have before correction (left)
The matter M is gray and the freespace is white

A balcony and a post are disconnected, a building has a spurious concavity

What we would like after correction (right)
Fill the building concavity and the gaps of the balcony and the post (eg the gap of the post is filled 

by choosing points y and z in different components of the post to connect it)

Fill neither the gap between the two posts nor the gap between the ground and the tree foliage 
(both locality and anisotropy are useful to do this)  

Local-convexity for a simple example



  

LC and its variants : convexity, weak-convexity, star-shapeness 
LC was ignored for surface reconstruction from images, thus we consider other problems

1) LC is used to segment surface regions into the ground surface and objects [Moosmann09]

2) Point clouds are segmented into weakly convex regions [Asafi13] 

3) A star-shaped objet is segmented in an image if the starshape center is given [Veksler08]

4) Foreground and background are segmented in an image by enforcing convexity [Gorelick14]

LC alternatives for shape completion
Previous work uses LC alternatives but needs strong assumptions to estimate primitives

1) Planes are estimated from a dense point cloud, then a simplified surface is generated using 
priors: the prevalence of vertical structures and orthogonal intersections [Chauve10]

2) A 3D space partition is built assuming that the surface is only horizontal or vertical [Oesau14]

3) A sweep surface (which generalizes ruled surface) is estimated for architectural scenes [Wu12] 

Previous work



  

There are several ways to apply LC to the matter tetrahedra of the 3D Delaunay triangulation T

Choose a norm ||.|| to define neighborhoods by its unit ball
Its unit ball is a cylinder (vertical axis, size similar to the expected level of detail of the shape) 

LC of M: if             and             and                    , then the line segment ab should be included in M  

Principle of method 1
1) Check whether every vertex     of T is in a matter tetrahedron (boolean           is true if yes)

2) Check whether every edge          of T is in matter using LC of M (boolean               is true if yes)

3) Relabel matter every freespace tetrahedron of T if its 4 vertices and 6 edges have true booleans

Two steps for computing the vertex booleans b(v)
Step 1 is a simple initialization: let b(v)=true iff there is a matter tetrahedron in T with vertex v

Step 2: search a tetrahedron                 using T vertices in the neighborhood of v, reset b(v)=true if 
the 4+6 booleans are true and                       (ie v is in the convex hull of     ,     ,      and      )

Method 1: explicit neighborhoods

a∈M b∈M ‖a−b‖⩽1

v i b (v i)

v i v j b (v i v j)

v j v k v l

v i v j vk v l
v∈v i v j vk v l

v i



  

Another kind of methods enumerates a lot of sets of freespace tetrahedra included in T, then all 
tetrahedra in a set S are relabeled matter if there are enough matter tetrahedra that surround S

Choice of sets
They should be neither too large nor too numerous for computation

The tetrahedra in S share a common vertex and S is strongly connected

S is strongly connected if its adjacency graph D is connected (D has a vertex for each tetrahedron 
in S, D has an edge for each pair of tetrahedra in S that have a common triangle face)

Isotropic surrounding measure c(S)
Let        be the boundary of S (ie the set of every triangle that is a face of a single tetrahedron in S)

Let         be the triangles in       that are also faces of matter tetrahedra in 

Let c(S) be the area of         divided by the area of        (thus                      )

If c(S) is close to 1, S is well surrounded by matter tetrahedra. In this case, most tetrahedra in S are 
in the convex hull of matter points (in         ), thus S should be relabeled matter by LC of M  

Methods 2&3: implicit neighborhoods

∂ S

∂mS T /S

0⩽c (S)⩽1

∂ S

∂mS ∂ S

∂mS



  

Here every tried set S is a strongly connected component of the freespace tetrahedra sharing a vertex.
In contrast to method 1, method 2 does not limit the geometric size of the relabeled tetrahedra.

Reminders
The surface is the set of triangles separating matter tetrahedra and freespace tetrahedra (of T)

A peak is a vertex such that the ring of its incident surface triangles defines a small solid angle  

Principle of method 2
For each vertex v of the surface:

1) Compute the set(s) S sharing v by a graph traversal in the adjacency graph of the T tetrahedra

2) Compute c(S) and the solid angle w(S) of S with apex v (note:                                                      ) 

3) Relabel matter S if w(S) is less than a threshold and c(S) is greater than another threshold

(Note: method 2 generalizes the Peak Removal operation in [Lhuillier13] for non-manifold surfaces) 

Method 2: remove surface peaks 

w (S)= ∑
vabc∈S

SolidAngle (v , vabc )



  

In contrast to method 2, the sets tried by method 3 take into account the scene anisotropy (i.e. the 
prevalence of vertical structures) and the freespace confidence of the tetrahedra.

Freespace confidence
    Every tetrahedron has a freespace confidence: the number of lines-of-sight that cross it.              

The tetrahedra with the smallest freespace confidences should be relabeled matter in priority.
 
Anisotropic surrounding measure c’(S)

Reminder: c(S) is a ratio between two sums of areas of triangles in the boundary of S

Obtain c’(S) by replacing every triangle area in c(S) by its projection on the horizontal plane       

Principle of method 3
For each vertex v of the surface:

1) Order                    the freespace tetrahedra sharing v by increasing freespace confidence 

2) Enumerate the sets S by all strongly connected components of all subsets 

3) Relabel matter S if S maximizes c’(S) and c’(S) is greater than a threshold 

Method 3: use anisotropy & freespace confidence  

Δ1,Δ2,...Δn

{Δ1, Δ2, ...Δ i}, i≤n



  

Notations for experiments

Combinations of our correction methods
Method 2+1: first apply method 2 (peak removal), then apply method 1 (explicit N)

Method 2+3, first apply method 2 (peak removal), then apply method 3 (implicit N)

More details in the paper (omited in the talk: final peak removal in the matter side)

Previous surface reconstruction methods and their corrected version
A manifold method in [Lhuillier18] named M

Method M(2+1): first apply 2+1 on the tetrahedron labeling obtained by ray-casting, 
then apply M. The definition of M(2+3) is very similar.

Graph-cut methods in [Vu12] and [Jacosek11] named G1 and G2, respectively

Method Gi(2+1): first apply Gi, then apply 2+1. The definition of Gi(2+3) is similar



  

Dataset

The sparse input point cloud is computed from two 2.5k videos at 30Hz.
They are taken by a Garmin Virb 360 camera moving in a city (The trajectory is 6.7km long)
It is mounted on the top of a car using a small mast.
There are 5.5M vertices in T which are reconstructed from 6.5k keyframes selected in the 

videos by structure-from-motion. Curves are reconstructed (more details in [Lhuillier18])



  

Only use corrections (1/3)

We compare the initial labeling by ray-casting (ie a tetrahedron is freespace iff it is 
crossed by a line-of-sight) and its relabeling by several methods.

Fig.3 shows labeling differences near a 5-way crossroad by projecting the freespace 
tetrahedra (in black) to the horizontal plane.

Our methods removes the largest freespace tetrahedra that are inconsistent with the 
geometry of the urban corridors.



  

Only use corrections (2/3)

Fig.4 shows that our methods change topology: trunk components are connected, 
tunnels (ie holes in the matter) in a traffic sign are filled. 



  

Only use corrections (3/3)

So we numerically evaluate the topology changes.

Tab.1 shows that our corrections globally improve the topology: the number of holes and 
the percentage of non-manifold vertices in the surface decrease. 



  

Use corrections with previous methods (1/3)
Now we compare the previous surface reconst. methods (M, G1, G2) and their corrected versions.

In Fig.5, 2+3 improves the surface normal of all methods in the lowest textured face of the building.

Here 2+1 has smaller effects than 2+3 since (1) Delaunay edges at the building are large and       
(2) the correction method 2+1 enforces a geometric size limit on the relabeled tetrahedra. 



  

Use corrections with previous methods (2/3)

Fig.6 shows that our corrections can improve sharp edges if they are vertical and convex 
(an edge is convex if the matter side of the surface near the edge is convex)

But our corrections can oversmooth sharp edges if they are concave. 



  

Use corrections with previous methods (3/3)

Tab.2 shows quantitative evaluations with a synthetic urban dataset  (a piecewise planar 
scene with real texture).

The T vertices and lines-of-sight are estimated by structure-from-motion applied to 
synthetic videos taken by a 360 camera (whose trajectory is 621m long). 



  

Conclusion

Local-convexity is used to improve previous surface reconstruction methods 
based on the 3D Delaunay triangulation of the sparse input point cloud

We do not try to fit primitives but enumerate and select tetrahedra for relabeling

We reconstruct an urban scene from videos taken by a consumer 360 camera 
and observe improvements:

- freespace concavities are removed

- topological noise (ie the spurious tunnels in the matter) is reduced

- surface manifoldness (of graph-cut) is improved most of time

     - sharp edges are improved if they are convex and vertical,

 - thin structures are completed,

    - both geometric error and surface complexity decrease



  

Limitations and future work

Avoid oversmoothing at sharp edges if they are concave 

Vary the privileged direction along which we obtain most improvements

Investigate other ways to reinforce local-convexity

Last improve many steps in the complete 3D modeling process (texturing,  loop 
closure, ...) 
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