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Steps to generate a VR environment from images of a real scene
(1) Choose experimental conditions and take the images

(2) Reconstruct a textured 3D model thanks to a photogrammetry method

(3) Import the 3D model into a game engine to generate a VR application

Motivations
VR needs a 3D model in a coordinate system that has a physically plausible 

scale and a vertical coordinate axis 

However standard photogrammetry does not provide this

How to choose such a coordinate system after (2) and before (3) ? 

Introduction



  

VR needs
A good scale for stereoscopic rendering, realistic speed and motions of the user 

in VR environment

The vertical direction must be known  for drawing as vertical lines in the HMD 
vertical lines in 3D, when the user looks the scene with usual poses of the 
head (no roll, no pitch)

Otherwise the VR experience is unrealist and cybersickness can increase

Definition of a « good » coordinate system of the 3D model
The 3D coordinates of the vertices are in meters

A coordinate axis (Oz in the paper) is vertical and points toward the sky 

Introduction



  

Photogrammetry with only a camera sensor
The coordinate system is set by structure-from-motion (SfM)

If the sensor has only one centre, SfM can only reconstruct up to a similarity 
transform of the 3D space (arbitrary rotation-translation-scale)

If it has several centres (eg a multi-camera) with a known distance, SfM can 
only reconstruct up to an Euclidean transform (arbitrary rotation-translation)

Thus the coordinate system has no chance to be a good one [Hartley 2000]

In practice 
Manually choose the coordinate system with a GUI (eg Blender, Unity ...), or

Compute the vertical assuming that the camera motion is planar & horizontal

Previous work



  

Photogrammetry with additional sensor(s)
GPS and IMU measures can be integrated in SfM [Klingner 2013 ...]

GPS provides georeferenced reconstruction, thus scale and vertical are known

IMU provides the vertical if it does not move, and scale by integrating over time

Each sensor has drawback: unavailable GPS in urban canyons, drift for IMU 

Paper contribution 
Reset the coordinate system of photogrammetry such that it becomes « good »

Do not need an additional sensor

Do not assume that the camera motion (acquisition) is planar and horizontal

Previous work



  

Experimental context
360 camera moving on the ground for complete and convenient reconstruction

Complete: with ground surface, façades, all kinds of ceilings (foliages, sky, ...)

Convenient: no need to rotate a camera to reconstruct all around 

Four assumptions 
The camera height (with respect to the ground) is roughly constant and known

The reconstructed surface is closed (it also covers the ceilings)

The camera height is smaller than the distance between camera and ceiling

Scene anisotropy: the density of surface normals is higher near the horizontal 
directions and near the vertical direction than elsewhere. (The main scene 
components are vertical, eg facades, or roughly horizontal, eg ground)

Assumptions



  

Notations for unknowns
Let v be the vertical direction pointing toward the sky. This is a unit vector in the 

3D coordinate system used and provided by photogrammetry.

The unoriented vertical is e*v where e=-1 or e=+1 

Principle 
Find a rough estimate v’ of e*v from the camera trajectory using PCA

Estimate e*v by a 2D Hough transform in a search space centered on v’

Find the good e thanks to distance computations between camera and surface

Obtain v and the scale ratio (between new and old coordinate systems) from e

Last update the coordinate system using v and the scale ratio

Reset the coordinate system



  

Rough estimate v’ (PCA)
Let C be the covariance matrix of the locations of the acquisition camera

Let v’ be the singular vector of the smallest singular value of C

If the camera motion is planar and horizontal, v=-v’ or v=+v’

Search space of e*v
It is a set of unit vectors u forming angle with v’ that is less than a threshold t

A large enough t is needed to deal with roughly planar ground surfaces with 
moderated slope angles. t< pi/2 since a hemisphere is enough.

Each vertical candidate u corresponds to a pixel of an image by a function

The function is defined by a pinhole camera (FoV=2*t, principal direction=v’)

Reset the coordinate system



  

2D Hough transform
Every triangle of the surface votes for every vertical candidate u that is parallel 

to the triangle. Ie triangle normal and u are orthogonal (up to sampling)

A triangle vote is weighted by the triangle area (invariance to mesh subdivision)

Last, e*v is the vertical candidate that maximises the votes

Explanation
The vertical candidates of a triangle are in a great circle of the unit sphere

If a triangle is vertical, its great circle always include the two opposite vertical 
directions, only one is in the search space (if t is large enough)

Thus every vertical triangle provides a vote for the (unoriented) vertical direction

Reset the coordinate system



  

Bad maximiser of the votes 
Every vertical triangle provides a vote for the vertical direction

Every horizontal triangle provides a vote for every horizontal direction

Thus the maximiser can be horizontal if the ground is a main part of the scene !

No other case of bad maximiser thanks to the anisotropy assumption  

Avoid bad maximiser thanks to the search size t
The angle between v’ and the vertical is smaller than the angle between v’ and 

every horizontal direction (since v’ is roughly vertical)

Choose a value of t that separates these two kinds of angles, here t=pi/4

Then the horizontal directions are not in the search space, but the vertical is

Reset the coordinate system



  

From unoriented to oriented vertical direction 
Now e*v is known (e and v are still unknown), thus we know the function e->v(e)

For each e in {-1,+1}, estimate the distance m(e) between the camera trajectory 
and the triangles that are “below” the camera trajectory in the sense of v(e)

Thanks to the assumptions, m(-1) and m(+1) are camera-ground or camera-
ceiling distances, and the smallest one is the camera-ground distance

Thus v=v(e) such that m(e)< m(-e)

Estimation of m(e)
Compute the intersection(s) between the surface and the half-line started at a 

camera location with direction -v(e)

m(e) is the mean of distances between each location and their intersections

Reset the coordinate system



  

Update the coordinate system used by photogrammetry 
Thanks to the assumptions, the camera height h is known in meters

Vector v becomes (0 0 1) and distance min{ m(-1),m(+1) } becomes h

The coordinates of all surface vertices are multiplied by h/min{ m(-1), m(+1} }

They are also multipled by a rotation that maps v to (0 0 1)  

Reset the coordinate system



  

Use a helmet-held Gopro Max 360 camera and obtain a video of equiangular 
cubemap images at 30Hz (each cube face is 1344*1344)

Convert each eq. cubemap image in a format supported by a photogrammetry 
software (equirectangular, standard cubemap, or fisheye images) 

Input images for photogrammetry



  

Dataset



  

Reminder: v’= PCA  and e*v=Hough

Project the cloud of reconstructed points 
using a projection parallel to a 
vertical direction

The direction of projection is v’ on the top 
and e*v on the bottom

The vertical scene components (canyon 
sides) are projected as curves, if the 
direction of projection is vertical

Thus e*v is better than v’ 

Comparisons between PCA and Hough for Basalt



  

The same comparison for City is 
less evident: the line segments 
look similar

A careful observation shows that 
line segments are less noisy or 
darker (or have smaller 
thickness) for e*v than for v’

Thus e*v is better than v’

Comparisons between PCA and Hough for City



  

Draw the 3D model by a pinhole 
camera that has zero pitch and 
zero roll with respect to a vertical 
direction of reference

The direction of reference is v’ on the 
top and e*v on the bottom

The vertical lines in 3D are drawn as 
vertical lines in 2D, if the 
reference direction is accurate

 
Thus e*v is better than v’ 

Comparisons between PCA and Hough for City



  

A search space is centered at 
v’ and  bounded by angle 
t=pi/4

The vertical candidates are 
mapped to a 100*100 
image by a pinhole camera

The darker the gray level, the 
greater the vote

Accumulator spaces of the Hough transform



  

The user of VR has several capabilities
Can move on the ground like a pedestrian (or fly in 3D like a bird)

Can follow the trajectory of the acquisition camera for a naive exploration where 
the visual quality is good (or go away to see photogrammetry inaccuracies)

The motions of the user are similar to those in previous VR applications by 
using joysticks (continuous translation and discrete rotation) 

Availability
Download the applications from http://maxime.lhuillier.free.fr

They are generated for several VR headsets thanks to Unity

(Available today: standalone Oculus Quest and Go)

(Available in the next few days: lot’s of VR headsets linked to a PC) 

VR applications to explore the immersive models

http://maxime.lhuillier.free.fr/


  

VR applications (screenshots of Oculus Quest)



  

Conclusion
The paper estimates the vertical direction and the scale of a triangulated 

surface reconstructed by photogrammetry, using 3D PCA and 2D Hough

This allows to reset the coordinate system for VR applications of immersive 
visualisation, which are available on the web

The paper experiments on non-trivial environments: a basalt canyon and a 
medieval city, whose acquisition trajectories are 800m and 1.6km long

Limitation: the vertical cannot be computed if all vertical triangles have the 
same direction (eg a set of parallel walls and facades) 

Improvements include

- comparisons to results obtained by other sensors (GPS, IMU) 

- decrease in cybersickness without sacrifying the spatial awareness
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